-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtrain.py
387 lines (322 loc) · 16.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
import tensorflow as tf
import numpy as np
import os
import argparse
import json
import shutil
import soundfile as sf
from model_causal import WaveNet as Generator
from model import WaveNet as Encoder
from model_discriminator import Wavenet as Discriminator
from sigproc import levinson, spec_to_ar
from sigproc import pre_emphasis
from sigproc import ar_analysis_filter, ar_synthesis_filter
from melspec import melspectrogram, inv_melspectrogram
from tensorflow.signal import stft, inverse_stft
from utils import get_stft_loss, get_perceptual_stft_loss
from utils import ganLossContainer
from utils import upsample_cond
from data_provider import NumpyDataProvider
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str,
default="./config/config.json")
parser.add_argument("--initial_model", type=str,
default=None)
parser.add_argument("--suppress_warnings", action='store_true')
args = parser.parse_args()
# suppress tensorflow warnings related to 1.X to 2.Y transition
if args.suppress_warnings:
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
return args
def get_config(filename):
with open(filename, 'r') as f:
cfg = json.load(f)
return cfg
def train_model(cfg, config_file):
args = get_args()
cfg = get_config(args.config)
run_id = cfg['run_id']
batch_size = 1
residual_channels = cfg['model']['residual_channels']
postnet_channels = cfg['model']['postnet_channels']
cond_embed_dim = cfg['model']['cond_embed_dim']
dilations = cfg['model']['dilations']
filter_width = cfg['model']['filter_width']
filter_order = cfg['data']['ar_filter_order']
num_freq = cfg['data']['num_freq']
nfft = 2 * (num_freq - 1)
sample_rate = cfg['data']['sample_rate']
frame_shift_ms = cfg['data']['frame_shift_ms']
frame_length_ms = cfg['data']['frame_length_ms']
frame_step = int(frame_shift_ms / 1000 * sample_rate)
frame_length = int(frame_length_ms / 1000 * sample_rate)
num_mels = cfg['data']['num_mels']
pre_emph_coef = cfg['data']['preemphasis']
mel_max_freq = cfg['data'].get('mel_max_freq')
mel_clip = True
cond_dim = num_mels
audio_dim = cfg['data']['audio_dim']
# data provider
train_list = os.path.join(cfg['data']['data_dir'], cfg['data']['train_list'])
audio_dir = os.path.join(cfg['data']['data_dir'], cfg['data']['audio_dir'])
min_samples = cfg['training']['min_samples']
max_samples = cfg['training']['max_samples']
dataprovider = NumpyDataProvider(train_list,
audio_dir,
cfg['data']['audio_ext'],
cfg['data']['audio_dim'],
min_samples=min_samples,
max_samples=max_samples)
x = tf.placeholder(shape=(None,), dtype=tf.float32)
x_real_flat = x
# apply pre-emphasis for spectral analysis
x_emph = pre_emphasis(x, coef=pre_emph_coef)
# compute short time Fourier transform
X = stft(x_emph, frame_length, frame_step, fft_length=nfft)
# get mel spectrogram
MS = melspectrogram(tf.abs(X), num_mels, sample_rate, num_freq, clip=mel_clip, fmax=mel_max_freq)
# pseudo invert mel spectrogram
X_rec = inv_melspectrogram(MS, num_mels, sample_rate, num_freq, clip=mel_clip, fmax=mel_max_freq)
# fit AR envelope
a = spec_to_ar(X_rec, filter_order)
# conditioning model
ms_img = tf.expand_dims(MS, 0)
use_condnet_dropout = False
encoder = Encoder(name='encoder',
input_channels=cond_dim,
output_channels=residual_channels,
dilations=cfg['cond_model']['dilations'],
filter_width=cfg['cond_model']['filter_width'],
postnet_channels=cfg['cond_model']['postnet_channels'],
use_dropout=use_condnet_dropout)
c = encoder.forward_pass(ms_img)
# upsample conditioning
c_upsampled = upsample_cond(x, c, frame_length, frame_step)
# generator model
generator = Generator(name='generator',
input_channels=1,
output_channels=1,
residual_channels=residual_channels,
postnet_channels=postnet_channels,
filter_width=filter_width,
dilations=dilations,
cond_channels=residual_channels,
cond_embed_dim=residual_channels,
causal=cfg['model']['causal'],
add_noise_at_each_layer=cfg['model']['add_noise_at_each_layer']
)
discriminator = Discriminator(name='discriminator',
input_channels=audio_dim,
output_channels=1,
cond_channels=residual_channels,
cond_dim=residual_channels,
dilations=cfg['discriminator']['dilations'],
residual_channels=cfg['discriminator']['residual_channels'],
filter_width=cfg['discriminator']['filter_width'],
postnet_channels=cfg['discriminator']['postnet_channels']
)
# inverse filter to get 'real' residual excitation
exc_real_flat = ar_analysis_filter(x, a, frame_length, frame_step, nfft)
exc_real = tf.reshape(exc_real_flat, [1, -1, 1])
# generate excitation
z = tf.random_normal(shape=tf.shape(exc_real), dtype=tf.float32)
exc_fake = generator.forward_pass(z, c_upsampled)
exc_fake_flat = exc_fake[0,:,0]
# synthesis filter for generated excitation
x_fake_flat = ar_synthesis_filter(exc_fake_flat, a, frame_length, frame_step, nfft)
stft_loss_domain = cfg['training']['gan_loss_domain']
stft_norm_type = cfg['training'].get('stft_norm_type', 2) # default value=2
stft_loss_multi_window = cfg['training'].get('stft_loss_multi_window', False)
if (stft_loss_domain == 'glot'):
stft_loss = get_stft_loss(exc_real_flat, exc_fake_flat,
frame_length, frame_step, nfft,
use_decibels=cfg['training']['stft_loss_in_db'],
norm_type=stft_norm_type)
elif (stft_loss_domain == 'wave'):
if cfg['training']['stft_perceptual_loss']:
stft_loss = get_perceptual_stft_loss(x_real_flat, x_fake_flat, a,
frame_length, frame_step, nfft,
use_decibels=cfg['training']['stft_loss_in_db'],
cancel_pre_emphasis=cfg['training']['stft_loss_cancel_pre_emph'],
pre_emph_coef=pre_emph_coef,
norm_type=stft_norm_type)
elif stft_loss_multi_window:
stft_loss = 0.0
stft_loss += get_stft_loss(
x_real_flat, x_fake_flat,
frame_length=128, frame_step=64, nfft=128,
use_decibels=cfg['training']['stft_loss_in_db'],
norm_type=stft_norm_type)
stft_loss += get_stft_loss(
x_real_flat, x_fake_flat,
frame_length=512, frame_step=128, nfft=512,
use_decibels=cfg['training']['stft_loss_in_db'],
norm_type=stft_norm_type)
stft_loss += get_stft_loss(
x_real_flat, x_fake_flat,
frame_length=2048, frame_step=512, nfft=2048,
use_decibels=cfg['training']['stft_loss_in_db'],
norm_type=stft_norm_type)
else:
stft_loss = get_stft_loss(x_real_flat, x_fake_flat,
frame_length, frame_step, nfft,
use_decibels=cfg['training']['stft_loss_in_db'],
norm_type=stft_norm_type)
# image-like tensors for discriminator input
x_real = tf.reshape(x_real_flat, [1, -1, 1])
x_fake = tf.reshape(x_fake_flat, [1, -1, 1])
gan_loss_domain = cfg['training']['gan_loss_domain']
if (gan_loss_domain == 'glot'):
gan_losses = ganLossContainer(exc_real,
exc_fake,
cond=c_upsampled,
discriminator=discriminator,
batch_size=32)
elif (gan_loss_domain == 'wave'):
gan_losses = ganLossContainer(x_real,
x_fake,
cond=c_upsampled,
discriminator=discriminator,
batch_size=32)
else:
raise ValueError(
'Invalid GAN loss domain "{}", valid options are "glot" and "wave"'.format(gan_loss_domain))
D_loss_gan, G_loss_gan = gan_losses.get_gan_losses(cfg['training']['gan_loss_type'])
# Generator losses and their tensorboard summaries
G_loss_total = 0.0
G_summaries = []
if cfg['training']['stft_loss_weight'] > 0.0:
G_loss_total += stft_loss * cfg['training']['stft_loss_weight']
G_summaries.append(tf.summary.scalar("STFT_loss", stft_loss))
if cfg['training']['gan_loss_weight'] > 0.0:
G_loss_total += G_loss_gan * cfg['training']['gan_loss_weight']
G_summaries.append(tf.summary.scalar("G_gan_loss", G_loss_gan))
G_summaries.append(tf.summary.scalar("G_total_loss", G_loss_total))
G_summary_op = tf.summary.merge(G_summaries)
# Discriminator losses and their tensorboard summaries
D_loss_total = 0.0
use_discriminator = False
D_summaries = []
if cfg['training']['gan_loss_weight'] > 0.0:
D_loss_total += D_loss_gan * cfg['training']['gan_loss_weight']
D_summaries.append(tf.summary.scalar("D_gan_loss", D_loss_gan))
use_discriminator = True
if cfg['training']['GP_loss_weight'] > 0.0:
GP = gan_losses.get_wasserstein_gradient_penalty()
D_loss_total += GP * cfg['training']['GP_loss_weight']
D_summaries.append(tf.summary.scalar("Wasserstein_GP", GP))
use_discriminator = True
if cfg['training']['R1_loss_weight'] > 0.0:
R1 = gan_losses.get_R1_gradient_penalty()
D_loss_total += R1 * cfg['training']['R1_loss_weight']
D_summaries.append(tf.summary.scalar("R1_GP", R1))
use_discriminator = True
D_summaries.append(tf.summary.scalar("D_total_loss", D_loss_total))
D_summary_op = tf.summary.merge(D_summaries)
# create directories for model training and summaries
run_root = './sessions/{}'.format(run_id)
for d in ['config', 'tensorboard', 'model', 'audio_snapshots']:
path = os.path.join(run_root, d)
if not os.path.isdir(path):
os.makedirs(path)
model_path = os.path.join(run_root, 'model')
logs_path = os.path.join(run_root, 'tensorboard')
fig_path = os.path.join(run_root, 'audio_snapshots')
shutil.copy(config_file, os.path.join(run_root, 'config/'))
# optimizer settings
adam_lr = cfg['training']['adam_lr']
adam_beta1 = cfg['training']['adam_beta1']
adam_beta2 = cfg['training']['adam_beta2']
# model variable lists
theta_e = encoder.get_variable_list()
theta_g = generator.get_variable_list()
theta_d = discriminator.get_variable_list()
# optimizer ops
G_solver = tf.train.AdamOptimizer(
learning_rate=adam_lr,
beta1=adam_beta1,
beta2=adam_beta2).minimize(G_loss_total, var_list=[theta_g, theta_e])
if use_discriminator:
D_solver = tf.train.AdamOptimizer(
learning_rate=adam_lr,
beta1=adam_beta1,
beta2=adam_beta2).minimize(D_loss_total, var_list=theta_d)
# restore training status (optional)
training_status_file = os.path.join(model_path, "status.npz")
if os.path.isfile(training_status_file):
restore_latest_checkpoint = True
else:
restore_latest_checkpoint = False
# train from custom checkpoint (takes priority)
if args.initial_model is not None:
restore_custom_checkpoint = True
else:
restore_custom_checkpoint = False
# continue training from latest checkpoint
if restore_latest_checkpoint and not restore_custom_checkpoint:
status = np.load(training_status_file)
iter_total = int(status['iter_total']) + 1
epoch_start = int(status['epoch']) + 1
else:
iter_total = 0
epoch_start = 0
with tf.Session() as sess:
init_op = tf.global_variables_initializer()
sess.run(init_op)
summary_writer = tf.summary.FileWriter(logs_path, graph=tf.get_default_graph())
saver = tf.train.Saver()
if restore_custom_checkpoint:
saver.restore(sess, args.initial_model)
elif restore_latest_checkpoint:
saver.restore(sess, tf.train.latest_checkpoint(model_path))
iter_ind = 0
finished_training = False
for epoch in range(epoch_start, cfg['training']['num_epochs']):
if finished_training:
break
for x_np in dataprovider:
# cut to a multiple of frame step
n_samples = frame_step * (x_np.shape[0] // frame_step)
x_np = x_np[:n_samples]
if use_discriminator:
_, D_loss_np, summary_D = sess.run([D_solver, D_loss_total, D_summary_op],
feed_dict={x: x_np})
if not np.all(np.isfinite(D_loss_np)):
raise ValueError(
"Discriminator loss is not finite, stopping training")
if iter_ind % cfg['training']['summary_interval'] == 0:
summary_writer.add_summary(summary_D, iter_total)
_, G_loss_np, summary_G = sess.run([G_solver, G_loss_total, G_summary_op],
feed_dict={x: x_np})
if not np.all(np.isfinite(G_loss_np)):
raise ValueError(
"Generator loss is not finite, stopping training")
if iter_ind % cfg['training']['summary_interval'] == 0:
summary_writer.add_summary(summary_G, iter_total)
# audio checkpoint
if iter_ind % cfg['training']['audio_snapshot_interval'] == 0:
x_real_np, x_fake_np, exc_real_np, exc_fake_np = sess.run([x_real_flat, x_fake_flat, exc_real_flat, exc_fake_flat],
feed_dict={x: x_np})
sf.write(os.path.join(fig_path, 'iter{}-target.wav'.format(iter_total)),
x_real_np, sample_rate)
sf.write(os.path.join(fig_path, 'iter{}-generated.wav'.format(iter_total)),
x_fake_np, sample_rate)
sf.write(os.path.join(fig_path, 'iter{}-exc_target.wav'.format(iter_total)),
exc_real_np, sample_rate)
sf.write(os.path.join(fig_path, 'iter{}-exc_generated.wav'.format(iter_total)),
exc_fake_np, sample_rate)
# save model
save_interval = cfg['training']['model_save_interval']
if iter_ind % save_interval == 0:
saver.save(sess, os.path.join(model_path, "model_iter{}.ckpt".format(iter_total)))
np.savez(training_status_file, iter_total=iter_total, epoch=epoch)
iter_ind += 1
iter_total += 1
if iter_ind >= cfg['training']['max_iters']:
finished_training = True
break
if __name__ == "__main__":
args = get_args()
cfg = get_config(args.config)
train_model(cfg, config_file=args.config)