-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnaive_inception.py
66 lines (51 loc) · 2.09 KB
/
naive_inception.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
# -*- coding: utf-8 -*-
"""
Created on Thu Mar 14 22:16:29 2019
@author: tanma
"""
import keras
import numpy as np
from keras.datasets import mnist
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
X_train = X_train / 255.0
X_test = X_test / 255.0
from keras.utils import np_utils
y_train = np_utils.to_categorical(y_train)
y_test = np_utils.to_categorical(y_test)
image_size = X_train.shape[1]
X_train = np.reshape(X_train,[-1, image_size, image_size, 1])
X_test = np.reshape(X_test,[-1, image_size, image_size, 1])
X_train = X_train.astype('float32') / 255
X_test = X_test.astype('float32') / 255
from keras.layers import Input
input_img = Input(shape = (28, 28, 1))
from keras.layers import Conv2D, MaxPooling2D
tower_1 = Conv2D(64, (1,1), padding='same', activation='relu')(input_img)
tower_1 = Conv2D(64, (3,3), padding='same', activation='relu')(tower_1)
tower_2 = Conv2D(64, (1,1), padding='same', activation='relu')(input_img)
tower_2 = Conv2D(64, (5,5), padding='same', activation='relu')(tower_2)
tower_3 = MaxPooling2D((3,3), strides=(1,1), padding='same')(input_img)
tower_3 = Conv2D(64, (1,1), padding='same', activation='relu')(tower_3)
output = keras.layers.concatenate([tower_1, tower_2, tower_3], axis = 3)
from keras.layers import Flatten, Dense
output = Flatten()(output)
out = Dense(10, activation='softmax')(output)
from keras.models import Model
model = Model(inputs = input_img, outputs = out)
from keras.optimizers import SGD
epochs = 25
lrate = 0.01
decay = lrate/epochs
sgd = SGD(lr=lrate, momentum=0.9, decay=decay, nesterov=False)
model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])
model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=epochs, batch_size=32)
from keras.models import model_from_json
import os
model_json = model.to_json()
with open("model.json", "w") as json_file:
json_file.write(model_json)
model.save_weights(os.path.join(os.getcwd(), 'model.h5'))
scores = model.evaluate(X_test, y_test, verbose=0)
print("Accuracy: %.2f%%" % (scores[1]*100))