-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFunctionsMath.h
355 lines (314 loc) · 18.7 KB
/
FunctionsMath.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
//HEAD_DSCODES
/*
<DUALSPHYSICS> Copyright (c) 2020 by Dr Jose M. Dominguez et al. (see http://dual.sphysics.org/index.php/developers/).
EPHYSLAB Environmental Physics Laboratory, Universidade de Vigo, Ourense, Spain.
School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester, U.K.
This file is part of DualSPHysics.
DualSPHysics is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License
as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version.
DualSPHysics is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License along with DualSPHysics. If not, see <http://www.gnu.org/licenses/>.
*/
//:#############################################################################
//:# Descripcion:
//:# =============
//:# Conjunto de funciones tipicas de geometria y demas.
//:#
//:# Cambios:
//:# =========
//:# - Implementacion. (19-03-2013)
//:# - Metodos para calcular area de un triangulo. (01-04-2013)
//:# - Nuevos metodos para interpolacion lineal y bilineal. (08-05-2013)
//:# - Nuevas funciones trigonometricas. (20-08-2015)
//:# - Nuevas funcion DistLine(). (15-03-2016)
//:# - Nuevas funciones PointPlane() y PlanePtVec(). (23-03-2016)
//:# - Nuevas funciones. (05-04-2016)
//:# - Nuevas funciones para matrices. (24-01-2017)
//:# - En el calculo de la matriz inversa puedes pasarle el determinante. (08-02-2017)
//:# - Nuevas funciones IntersecPlaneLine(). (08-09-2016)
//:# - Nuevas funciones MulMatrix3x3(), TrasMatrix3x3() y RotMatrix3x3(). (29-11-2017)
//:# - Nueva funcion VecOrthogonal(). (10-08-2018)
//:# - Nueva funciones Rect3d2pt(), RectPosX(), RectPosY(), RectPosZ(). (21-08-2018)
//:# - Nuevas funciones VecOrthogonal2(). (05-10-2018)
//:# - Se mueven las funciones de geometria 2D y 3D a los nuevos ficheros
//:# FunctionsGeo2d.h y FunctionsGeoed.h respectivamente. (08-02-2019)
//:#############################################################################
/// \file FunctionsMath.h \brief Declares basic/general math functions.
#ifndef _FunctionsMath_
#define _FunctionsMath_
#include "TypesDef.h"
#include <cstdlib>
#include <cmath>
#include <cfloat>
/// Implements a set of basic/general math functions.
namespace fmath{
//==============================================================================
/// Devuelve la interpolacion lineal de dos valores.
/// Returns the linear interpolation value.
//==============================================================================
inline double InterpolationLinear(double x,double x0,double x1,double v0,double v1){
const double fx=(x-x0)/(x1-x0);
return(fx*(v1-v0)+v0);
}
//==============================================================================
/// Devuelve la interpolacion lineal de dos valores.
/// Returns the linear interpolation value.
//==============================================================================
inline float InterpolationLinear(float x,float x0,float x1,float v0,float v1){
const float fx=(x-x0)/(x1-x0);
return(fx*(v1-v0)+v0);
}
//==============================================================================
/// Devuelve la interpolacion bilineal de cuatro valores que forman un cuadrado.
/// Returns the bilinear interpolation of four values that form a square.
//==============================================================================
inline double InterpolationBilinear(double x,double y,double px,double py,double dx,double dy,double vxy,double vxyy,double vxxy,double vxxyy){
double vy0=InterpolationLinear(x,px,px+dx,vxy,vxxy);
double vy1=InterpolationLinear(x,px,px+dx,vxyy,vxxyy);
return(InterpolationLinear(y,py,py+dy,vy0,vy1));
}
//==============================================================================
/// Calcula el determinante de una matriz de 3x3.
/// Returns the determinant of a 3x3 matrix.
//==============================================================================
inline double Determinant3x3(const tmatrix3d &d){
return(d.a11 * d.a22 * d.a33 + d.a12 * d.a23 * d.a31 + d.a13 * d.a21 * d.a32 - d.a31 * d.a22 * d.a13 - d.a32 * d.a23 * d.a11 - d.a33 * d.a21 * d.a12);
}
//==============================================================================
/// Calcula el determinante de una matriz de 3x3.
/// Returns the determinant of a 3x3 matrix.
//==============================================================================
inline float Determinant3x3(const tmatrix3f &d){
return(d.a11 * d.a22 * d.a33 + d.a12 * d.a23 * d.a31 + d.a13 * d.a21 * d.a32 - d.a31 * d.a22 * d.a13 - d.a32 * d.a23 * d.a11 - d.a33 * d.a21 * d.a12);
}
//==============================================================================
/// Calcula el determinante de una matriz simetrica de 3x3.
/// Returns the determinant of a 3x3 symmetric matrix.
//==============================================================================
inline float Determinant3x3(const tsymatrix3f &d){
return(d.xx * (d.yy*d.zz - d.yz*d.yz)+
d.xy * (d.yz*d.xz - d.xy*d.zz)+
d.xz * (d.xy*d.yz - d.yy*d.xz));
}
//==============================================================================
/// Calcula el determinante de una matriz simetrica de 4x4.
/// Returns the determinant of a 4x4 symmetric matrix.
//==============================================================================
inline float Determinant4x4(const tsymatrix4f &d){
return(d.a11 * (d.a22*d.a33*d.a44 + d.a23*d.a34*d.a24 + d.a24*d.a23*d.a34 - d.a22*d.a34*d.a34 - d.a23*d.a23*d.a44 - d.a24*d.a33*d.a24)+
d.a12 * (d.a12*d.a34*d.a34 + d.a23*d.a13*d.a44 + d.a24*d.a33*d.a14 - d.a12*d.a33*d.a44 - d.a23*d.a34*d.a14 - d.a24*d.a13*d.a34)+
d.a13 * (d.a12*d.a23*d.a44 + d.a22*d.a34*d.a14 + d.a24*d.a13*d.a24 - d.a12*d.a34*d.a24 - d.a22*d.a13*d.a44 - d.a24*d.a23*d.a14)+
d.a14 * (d.a12*d.a33*d.a24 + d.a22*d.a13*d.a34 + d.a23*d.a23*d.a14 - d.a12*d.a23*d.a34 - d.a22*d.a33*d.a14 - d.a23*d.a13*d.a24));
}
//==============================================================================
/// Devuelve la matriz inversa de una matriz de 3x3.
/// Returns the inverse matrix of a 3x3 matrix.
//==============================================================================
inline tmatrix3f InverseMatrix3x3(const tmatrix3f &d,const float det){
tmatrix3f inv;
if(det){
inv.a11= (d.a22*d.a33-d.a23*d.a32)/det;
inv.a12=-(d.a12*d.a33-d.a13*d.a32)/det;
inv.a13= (d.a12*d.a23-d.a13*d.a22)/det;
inv.a21=-(d.a21*d.a33-d.a23*d.a31)/det;
inv.a22= (d.a11*d.a33-d.a13*d.a31)/det;
inv.a23=-(d.a11*d.a23-d.a13*d.a21)/det;
inv.a31= (d.a21*d.a32-d.a22*d.a31)/det;
inv.a32=-(d.a11*d.a32-d.a12*d.a31)/det;
inv.a33= (d.a11*d.a22-d.a12*d.a21)/det;
}
else inv=TMatrix3f(0);
return(inv);
}
//==============================================================================
/// Devuelve la matriz inversa de una matriz de 3x3.
/// Returns the inverse matrix of a 3x3 matrix.
//==============================================================================
inline tmatrix3f InverseMatrix3x3(const tmatrix3f &d){
return(InverseMatrix3x3(d,Determinant3x3(d)));
}
//==============================================================================
/// Devuelve la matriz inversa de una matriz de 3x3.
/// Returns the inverse matrix of a 3x3 matrix.
//==============================================================================
inline tmatrix3d InverseMatrix3x3(const tmatrix3d &d,const double det){
tmatrix3d inv;
if(det){
inv.a11= (d.a22*d.a33-d.a23*d.a32)/det;
inv.a12=-(d.a12*d.a33-d.a13*d.a32)/det;
inv.a13= (d.a12*d.a23-d.a13*d.a22)/det;
inv.a21=-(d.a21*d.a33-d.a23*d.a31)/det;
inv.a22= (d.a11*d.a33-d.a13*d.a31)/det;
inv.a23=-(d.a11*d.a23-d.a13*d.a21)/det;
inv.a31= (d.a21*d.a32-d.a22*d.a31)/det;
inv.a32=-(d.a11*d.a32-d.a12*d.a31)/det;
inv.a33= (d.a11*d.a22-d.a12*d.a21)/det;
}
else inv=TMatrix3d(0);
return(inv);
}
//==============================================================================
/// Devuelve la matriz inversa de una matriz de 3x3.
/// Returns the inverse matrix of a 3x3 matrix.
//==============================================================================
inline tmatrix3d InverseMatrix3x3(const tmatrix3d &d){
return(InverseMatrix3x3(d,Determinant3x3(d)));
}
//==============================================================================
/// Calcula el determinante de una matriz de 4x4.
/// Returns the determinant of a 4x4 matrix.
//==============================================================================
inline double Determinant4x4(const tmatrix4d &d){
return(d.a14*d.a23*d.a32*d.a41 - d.a13*d.a24*d.a32*d.a41-
d.a14*d.a22*d.a33*d.a41 + d.a12*d.a24*d.a33*d.a41+
d.a13*d.a22*d.a34*d.a41 - d.a12*d.a23*d.a34*d.a41-
d.a14*d.a23*d.a31*d.a42 + d.a13*d.a24*d.a31*d.a42+
d.a14*d.a21*d.a33*d.a42 - d.a11*d.a24*d.a33*d.a42-
d.a13*d.a21*d.a34*d.a42 + d.a11*d.a23*d.a34*d.a42+
d.a14*d.a22*d.a31*d.a43 - d.a12*d.a24*d.a31*d.a43-
d.a14*d.a21*d.a32*d.a43 + d.a11*d.a24*d.a32*d.a43+
d.a12*d.a21*d.a34*d.a43 - d.a11*d.a22*d.a34*d.a43-
d.a13*d.a22*d.a31*d.a44 + d.a12*d.a23*d.a31*d.a44+
d.a13*d.a21*d.a32*d.a44 - d.a11*d.a23*d.a32*d.a44-
d.a12*d.a21*d.a33*d.a44 + d.a11*d.a22*d.a33*d.a44);
}
//==============================================================================
/// Calcula el determinante de una matriz de 4x4.
/// Returns the determinant of a 4x4 matrix.
//==============================================================================
inline float Determinant4x4(const tmatrix4f &d){
return(d.a14*d.a23*d.a32*d.a41 - d.a13*d.a24*d.a32*d.a41-
d.a14*d.a22*d.a33*d.a41 + d.a12*d.a24*d.a33*d.a41+
d.a13*d.a22*d.a34*d.a41 - d.a12*d.a23*d.a34*d.a41-
d.a14*d.a23*d.a31*d.a42 + d.a13*d.a24*d.a31*d.a42+
d.a14*d.a21*d.a33*d.a42 - d.a11*d.a24*d.a33*d.a42-
d.a13*d.a21*d.a34*d.a42 + d.a11*d.a23*d.a34*d.a42+
d.a14*d.a22*d.a31*d.a43 - d.a12*d.a24*d.a31*d.a43-
d.a14*d.a21*d.a32*d.a43 + d.a11*d.a24*d.a32*d.a43+
d.a12*d.a21*d.a34*d.a43 - d.a11*d.a22*d.a34*d.a43-
d.a13*d.a22*d.a31*d.a44 + d.a12*d.a23*d.a31*d.a44+
d.a13*d.a21*d.a32*d.a44 - d.a11*d.a23*d.a32*d.a44-
d.a12*d.a21*d.a33*d.a44 + d.a11*d.a22*d.a33*d.a44);
}
//==============================================================================
/// Devuelve la matriz inversa de una matriz de 4x4.
/// Returns the inverse matrix of a 4x4 matrix.
//==============================================================================
inline tmatrix4f InverseMatrix4x4(const tmatrix4f &d,const float det){
tmatrix4f inv;
if(det){
inv.a11=(d.a22*(d.a33*d.a44-d.a34*d.a43)+d.a23*(d.a34*d.a42-d.a32*d.a44)+d.a24*(d.a32*d.a43-d.a33*d.a42))/det;
inv.a21=(d.a21*(d.a34*d.a43-d.a33*d.a44)+d.a23*(d.a31*d.a44-d.a34*d.a41)+d.a24*(d.a33*d.a41-d.a31*d.a43))/det;
inv.a31=(d.a21*(d.a32*d.a44-d.a34*d.a42)+d.a22*(d.a34*d.a41-d.a31*d.a44)+d.a24*(d.a31*d.a42-d.a32*d.a41))/det;
inv.a41=(d.a21*(d.a33*d.a42-d.a32*d.a43)+d.a22*(d.a31*d.a43-d.a33*d.a41)+d.a23*(d.a32*d.a41-d.a31*d.a42))/det;
inv.a12=(d.a12*(d.a34*d.a43-d.a33*d.a44)+d.a13*(d.a32*d.a44-d.a34*d.a42)+d.a14*(d.a33*d.a42-d.a32*d.a43))/det;
inv.a22=(d.a11*(d.a33*d.a44-d.a34*d.a43)+d.a13*(d.a34*d.a41-d.a31*d.a44)+d.a14*(d.a31*d.a43-d.a33*d.a41))/det;
inv.a32=(d.a11*(d.a34*d.a42-d.a32*d.a44)+d.a12*(d.a31*d.a44-d.a34*d.a41)+d.a14*(d.a32*d.a41-d.a31*d.a42))/det;
inv.a42=(d.a11*(d.a32*d.a43-d.a33*d.a42)+d.a12*(d.a33*d.a41-d.a31*d.a43)+d.a13*(d.a31*d.a42-d.a32*d.a41))/det;
inv.a13=(d.a12*(d.a23*d.a44-d.a24*d.a43)+d.a13*(d.a24*d.a42-d.a22*d.a44)+d.a14*(d.a22*d.a43-d.a23*d.a42))/det;
inv.a23=(d.a11*(d.a24*d.a43-d.a23*d.a44)+d.a13*(d.a21*d.a44-d.a24*d.a41)+d.a14*(d.a23*d.a41-d.a21*d.a43))/det;
inv.a33=(d.a11*(d.a22*d.a44-d.a24*d.a42)+d.a12*(d.a24*d.a41-d.a21*d.a44)+d.a14*(d.a21*d.a42-d.a22*d.a41))/det;
inv.a43=(d.a11*(d.a23*d.a42-d.a22*d.a43)+d.a12*(d.a21*d.a43-d.a23*d.a41)+d.a13*(d.a22*d.a41-d.a21*d.a42))/det;
inv.a14=(d.a12*(d.a24*d.a33-d.a23*d.a34)+d.a13*(d.a22*d.a34-d.a24*d.a32)+d.a14*(d.a23*d.a32-d.a22*d.a33))/det;
inv.a24=(d.a11*(d.a23*d.a34-d.a24*d.a33)+d.a13*(d.a24*d.a31-d.a21*d.a34)+d.a14*(d.a21*d.a33-d.a23*d.a31))/det;
inv.a34=(d.a11*(d.a24*d.a32-d.a22*d.a34)+d.a12*(d.a21*d.a34-d.a24*d.a31)+d.a14*(d.a22*d.a31-d.a21*d.a32))/det;
inv.a44=(d.a11*(d.a22*d.a33-d.a23*d.a32)+d.a12*(d.a23*d.a31-d.a21*d.a33)+d.a13*(d.a21*d.a32-d.a22*d.a31))/det;
}
else inv=TMatrix4f(0);
return(inv);
}
//==============================================================================
/// Devuelve la matriz inversa de una matriz de 4x4.
/// Returns the inverse matrix of a 4x4 matrix.
//==============================================================================
inline tmatrix4f InverseMatrix4x4(const tmatrix4f &d){
return(InverseMatrix4x4(d,Determinant4x4(d)));
}
//==============================================================================
/// Devuelve la matriz inversa de una matriz de 4x4.
/// Returns the inverse matrix of a 4x4 matrix.
//==============================================================================
inline tmatrix4d InverseMatrix4x4(const tmatrix4d &d,const double det){
tmatrix4d inv;
if(det){
inv.a11=(d.a22*(d.a33*d.a44-d.a34*d.a43)+d.a23*(d.a34*d.a42-d.a32*d.a44)+d.a24*(d.a32*d.a43-d.a33*d.a42))/det;
inv.a21=(d.a21*(d.a34*d.a43-d.a33*d.a44)+d.a23*(d.a31*d.a44-d.a34*d.a41)+d.a24*(d.a33*d.a41-d.a31*d.a43))/det;
inv.a31=(d.a21*(d.a32*d.a44-d.a34*d.a42)+d.a22*(d.a34*d.a41-d.a31*d.a44)+d.a24*(d.a31*d.a42-d.a32*d.a41))/det;
inv.a41=(d.a21*(d.a33*d.a42-d.a32*d.a43)+d.a22*(d.a31*d.a43-d.a33*d.a41)+d.a23*(d.a32*d.a41-d.a31*d.a42))/det;
inv.a12=(d.a12*(d.a34*d.a43-d.a33*d.a44)+d.a13*(d.a32*d.a44-d.a34*d.a42)+d.a14*(d.a33*d.a42-d.a32*d.a43))/det;
inv.a22=(d.a11*(d.a33*d.a44-d.a34*d.a43)+d.a13*(d.a34*d.a41-d.a31*d.a44)+d.a14*(d.a31*d.a43-d.a33*d.a41))/det;
inv.a32=(d.a11*(d.a34*d.a42-d.a32*d.a44)+d.a12*(d.a31*d.a44-d.a34*d.a41)+d.a14*(d.a32*d.a41-d.a31*d.a42))/det;
inv.a42=(d.a11*(d.a32*d.a43-d.a33*d.a42)+d.a12*(d.a33*d.a41-d.a31*d.a43)+d.a13*(d.a31*d.a42-d.a32*d.a41))/det;
inv.a13=(d.a12*(d.a23*d.a44-d.a24*d.a43)+d.a13*(d.a24*d.a42-d.a22*d.a44)+d.a14*(d.a22*d.a43-d.a23*d.a42))/det;
inv.a23=(d.a11*(d.a24*d.a43-d.a23*d.a44)+d.a13*(d.a21*d.a44-d.a24*d.a41)+d.a14*(d.a23*d.a41-d.a21*d.a43))/det;
inv.a33=(d.a11*(d.a22*d.a44-d.a24*d.a42)+d.a12*(d.a24*d.a41-d.a21*d.a44)+d.a14*(d.a21*d.a42-d.a22*d.a41))/det;
inv.a43=(d.a11*(d.a23*d.a42-d.a22*d.a43)+d.a12*(d.a21*d.a43-d.a23*d.a41)+d.a13*(d.a22*d.a41-d.a21*d.a42))/det;
inv.a14=(d.a12*(d.a24*d.a33-d.a23*d.a34)+d.a13*(d.a22*d.a34-d.a24*d.a32)+d.a14*(d.a23*d.a32-d.a22*d.a33))/det;
inv.a24=(d.a11*(d.a23*d.a34-d.a24*d.a33)+d.a13*(d.a24*d.a31-d.a21*d.a34)+d.a14*(d.a21*d.a33-d.a23*d.a31))/det;
inv.a34=(d.a11*(d.a24*d.a32-d.a22*d.a34)+d.a12*(d.a21*d.a34-d.a24*d.a31)+d.a14*(d.a22*d.a31-d.a21*d.a32))/det;
inv.a44=(d.a11*(d.a22*d.a33-d.a23*d.a32)+d.a12*(d.a23*d.a31-d.a21*d.a33)+d.a13*(d.a21*d.a32-d.a22*d.a31))/det;
}
else inv=TMatrix4d(0);
return(inv);
}
//==============================================================================
/// Devuelve la matriz inversa de una matriz de 4x4.
/// Returns the inverse matrix of a 4x4 matrix.
//==============================================================================
inline tmatrix4d InverseMatrix4x4(const tmatrix4d &d){
return(InverseMatrix4x4(d,Determinant4x4(d)));
}
//==============================================================================
/// Devuelve producto de 2 matrices de 3x3.
/// Returns the product of 2 matrices of 3x3.
//==============================================================================
inline tmatrix3f MulMatrix3x3(const tmatrix3f &a,const tmatrix3f &b){
return(TMatrix3f(
a.a11*b.a11 + a.a12*b.a21 + a.a13*b.a31, a.a11*b.a12 + a.a12*b.a22 + a.a13*b.a32, a.a11*b.a13 + a.a12*b.a23 + a.a13*b.a33,
a.a21*b.a11 + a.a22*b.a21 + a.a23*b.a31, a.a21*b.a12 + a.a22*b.a22 + a.a23*b.a32, a.a21*b.a13 + a.a22*b.a23 + a.a23*b.a33,
a.a31*b.a11 + a.a32*b.a21 + a.a33*b.a31, a.a31*b.a12 + a.a32*b.a22 + a.a33*b.a32, a.a31*b.a13 + a.a32*b.a23 + a.a33*b.a33
));
}
//==============================================================================
/// Devuelve traspuesta de matriz 3x3.
/// Returns the transpose from matrix 3x3.
//==============================================================================
inline tmatrix3f TrasMatrix3x3(const tmatrix3f &a){
return(TMatrix3f(
a.a11, a.a21, a.a31,
a.a12, a.a22, a.a32,
a.a13, a.a23, a.a33
));
}
//==============================================================================
/// Devuelve la matriz de rotacion.
/// Returns the rotation matrix.
//==============================================================================
inline tmatrix3f RotMatrix3x3(const tfloat3 &ang){
const float cosx=cos(ang.x),cosy=cos(ang.y),cosz=cos(ang.z);
const float sinx=sin(ang.x),siny=sin(ang.y),sinz=sin(ang.z);
return(TMatrix3f(
cosy*cosz, -cosy*sinz, siny,
sinx*siny*cosz + cosx*sinz, -sinx*siny*sinz + cosx*cosz, -sinx*cosy,
-cosx*siny*cosz + sinx*sinz, cosx*siny*sinz + sinx*cosz, cosx*cosy
));
}
//==============================================================================
/// Returns cotangent of angle in radians.
//==============================================================================
inline double cot(double z){ return(1.0 / tan(z)); }
//==============================================================================
/// Returns hyperbolic cotangent of angle in radians.
//==============================================================================
inline double coth(double z){ return(cosh(z) / sinh(z)); }
//==============================================================================
/// Returns secant of angle in radians.
//==============================================================================
inline double sec(double z){ return(1.0 / cos(z)); }
//==============================================================================
/// Returns cosecant of input angle in radians.
//==============================================================================
inline double csc(double z){ return(1.0 / sin(z)); }
}
#endif