forked from princeton-nlp/semsup
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
90 lines (73 loc) · 4.05 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import yaml
from argparse import ArgumentParser
from jsonargparse import ActionConfigFile
from jsonargparse import ArgumentParser as JSONArgumentParser
from jsonargparse.typing import Path_fr
import torch.nn.functional as F
import pytorch_lightning as pl
from pytorch_lightning.loggers import WandbLogger
from pytorch_lightning.callbacks import ModelCheckpoint
import semsup.models
import semsup.data
def parse_arg_with_default(default_config, args, key, required = False):
default = default_config[key] if key in default_config else None
ret = getattr(args, key) if getattr(args, key) else default
if required and ret is None:
raise Exception(f"{key} is a required argument")
return ret
if __name__ == "__main__":
cls_parser = ArgumentParser()
cls_parser.add_argument("--default_config", type=str, help="path to the default config")
cls_parser.add_argument("--config", type=str, help="the configuration file to use")
cls_parser.add_argument("--ModelCls", type=str, help="model class to use")
cls_parser.add_argument("--DataCls", type=str, help="data class to use")
cls_args, _ = cls_parser.parse_known_args()
with open(cls_args.config) as f:
cls_config = yaml.safe_load(f)
ModelCls = parse_arg_with_default(cls_config, cls_args, "ModelCls", required=True)
ModelCls = getattr(semsup.models, ModelCls)
DataCls = parse_arg_with_default(cls_config, cls_args, "DataCls", required=True)
DataCls = getattr(semsup.data, DataCls)
parser = JSONArgumentParser(default_config_files=[cls_args.default_config])
parser.add_argument("--default_config", type=Path_fr, help="path to the default config")
parser.add_argument("--config", action=ActionConfigFile, help="the configuration file to use")
parser.add_argument("--ModelCls", type=str, help="model class to use")
parser.add_argument("--DataCls", type=str, help="data class to use")
parser.add_argument("--name", type=str, help="name of the experiment to run")
parser.add_argument("--seed", type=int, help="int to seed everything with")
parser.add_argument("--load.checkpoint", type=Path_fr, help="path to load model checkpoint")
parser.add_argument("--load.hyperparams", action="store_true", help="use the hyperparams from the checkpoint")
parser.add_argument("--validate", action="store_true", help="do validation")
parser.add_argument("--train", action="store_true", help="do training")
parser.add_argument("--name_suffix", type=str, help="suffix to add to the logger and ckpt name")
parser.add_argument("--logger.group", type=str, help="name of the group to log the runs to")
parser.add_class_arguments(ModelCls, "model")
parser.add_class_arguments(DataCls, "data")
parser.add_class_arguments(pl.Trainer, "trainer")
parser.add_class_arguments(WandbLogger, "logger")
parser.add_class_arguments(ModelCheckpoint, "checkpoint")
args = parser.parse_args()
pl.seed_everything(args.seed)
if args.name_suffix:
args.name = args.name + "_" + args.name_suffix
args.logger.name = args.name if args.name else None
args.checkpoint.filename = args.name if args.name else None
cfg = parser.instantiate_classes(args)
cfg.checkpoint.CHECKPOINT_NAME_LAST = "last_" + args.name
if cfg.load.checkpoint:
cfg.model = (
ModelCls.load_from_checkpoint(cfg.load.checkpoint)
if cfg.load.hyperparams else
ModelCls.load_from_checkpoint(cfg.load.checkpoint, args=cfg.model.args)
)
if args.trainer.logger:
cfg.logger.watch(cfg.model) #log="all", log_freq=5000)
cfg.logger.experiment.config.update(args)
# modify the trainer, since it depends on instantiated classes like loggers and callbacks
args.trainer.logger = cfg.logger if args.trainer.logger else False
args.trainer.callbacks = [cfg.checkpoint] if args.trainer.checkpoint_callback else []
cfg.trainer = pl.Trainer(**args.trainer.as_dict())
if cfg.validate:
cfg.trainer.validate(cfg.model, cfg.data)
if cfg.train:
cfg.trainer.fit(cfg.model, cfg.data)