-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathworker.py
180 lines (156 loc) · 7.86 KB
/
worker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
#!/usr/bin/env python
import go_vncdriver
import tensorflow as tf
import argparse
import logging
import sys, signal
import time
import os
from a3c import A3C
from envs import create_env
from constants import constants
import distutils.version
use_tf12_api = distutils.version.LooseVersion(tf.VERSION) >= distutils.version.LooseVersion('0.12.0')
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
# Disables write_meta_graph argument, which freezes entire process and is mostly useless.
class FastSaver(tf.train.Saver):
def save(self, sess, save_path, global_step=None, latest_filename=None,
meta_graph_suffix="meta", write_meta_graph=True):
super(FastSaver, self).save(sess, save_path, global_step, latest_filename,
meta_graph_suffix, False)
def run(args, server):
env = create_env(args.env_id, client_id=str(args.task), remotes=args.remotes)
trainer = A3C(env, args.task, args.visualise, args.unsup)
# logging
if args.task == 0:
with open(args.log_dir + '/log.txt', 'w') as fid:
for key, val in constants.items():
fid.write('%s: %s\n'%(str(key), str(val)))
fid.write('input observation: %s\n'%str(env.observation_space.shape))
fid.write('env name: %s\n'%str(env.spec.id))
fid.write('unsup method type: %s\n'%str(args.unsup))
# Variable names that start with "local" are not saved in checkpoints.
if use_tf12_api:
variables_to_save = [v for v in tf.global_variables() if not v.name.startswith("local")]
init_op = tf.variables_initializer(variables_to_save)
init_all_op = tf.global_variables_initializer()
else:
variables_to_save = [v for v in tf.all_variables() if not v.name.startswith("local")]
init_op = tf.initialize_variables(variables_to_save)
init_all_op = tf.initialize_all_variables()
saver = FastSaver(variables_to_save)
if args.pretrain is not None:
variables_to_restore = [v for v in tf.trainable_variables() if not v.name.startswith("local")]
pretrain_saver = FastSaver(variables_to_restore)
var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, tf.get_variable_scope().name)
logger.info('Trainable vars:')
for v in var_list:
logger.info(' %s %s', v.name, v.get_shape())
def init_fn(ses):
logger.info("Initializing all parameters.")
ses.run(init_all_op)
if args.pretrain is not None:
pretrain = tf.train.latest_checkpoint(args.pretrain)
logger.info("==> Restoring from given pretrained checkpoint.")
logger.info(" Pretraining address: %s", pretrain)
pretrain_saver.restore(ses, pretrain)
logger.info("==> Done restoring model! Restored %d variables.", len(variables_to_restore))
config = tf.ConfigProto(device_filters=["/job:ps", "/job:worker/task:{}/cpu:0".format(args.task)])
logdir = os.path.join(args.log_dir, 'train')
if use_tf12_api:
summary_writer = tf.summary.FileWriter(logdir + "_%d" % args.task)
else:
summary_writer = tf.train.SummaryWriter(logdir + "_%d" % args.task)
logger.info("Events directory: %s_%s", logdir, args.task)
sv = tf.train.Supervisor(is_chief=(args.task == 0),
logdir=logdir,
saver=saver,
summary_op=None,
init_op=init_op,
init_fn=init_fn,
summary_writer=summary_writer,
ready_op=tf.report_uninitialized_variables(variables_to_save),
global_step=trainer.global_step,
save_model_secs=30,
save_summaries_secs=30)
num_global_steps = constants['MAX_GLOBAL_STEPS']
logger.info(
"Starting session. If this hangs, we're mostly likely waiting to connect to the parameter server. " +
"One common cause is that the parameter server DNS name isn't resolving yet, or is misspecified.")
with sv.managed_session(server.target, config=config) as sess, sess.as_default():
# Workaround for FailedPreconditionError
# see: https://github.com/openai/universe-starter-agent/issues/44 and 31
sess.run(trainer.sync)
trainer.start(sess, summary_writer)
global_step = sess.run(trainer.global_step)
logger.info("Starting training at gobal_step=%d", global_step)
while not sv.should_stop() and (not num_global_steps or global_step < num_global_steps):
trainer.process(sess)
global_step = sess.run(trainer.global_step)
# Ask for all the services to stop.
sv.stop()
logger.info('reached %s steps. worker stopped.', global_step)
def cluster_spec(num_workers, num_ps, port=12222):
"""
More tensorflow setup for data parallelism
"""
cluster = {}
all_ps = []
host = '127.0.0.1'
for _ in range(num_ps):
all_ps.append('{}:{}'.format(host, port))
port += 1
cluster['ps'] = all_ps
all_workers = []
for _ in range(num_workers):
all_workers.append('{}:{}'.format(host, port))
port += 1
cluster['worker'] = all_workers
return cluster
def main(_):
"""
Setting up Tensorflow for data parallel work
"""
parser = argparse.ArgumentParser(description=None)
parser.add_argument('-v', '--verbose', action='count', dest='verbosity', default=0, help='Set verbosity.')
parser.add_argument('--task', default=0, type=int, help='Task index')
parser.add_argument('--job-name', default="worker", help='worker or ps')
parser.add_argument('--num-workers', default=1, type=int, help='Number of workers')
parser.add_argument('--log-dir', default="tmp/vpc", help='Log directory path')
parser.add_argument('--env-id', default="mazeSmall-v0", help='Environment id')
parser.add_argument('-r', '--remotes', default=None,
help='References to environments to create (e.g. -r 20), '
'or the address of pre-existing VNC servers and '
'rewarders to use (e.g. -r vnc://localhost:5900+15900,vnc://localhost:5901+15901)')
parser.add_argument('--visualise', action='store_true',
help="Visualise the gym environment by running env.render() between each timestep")
parser.add_argument('--unsup', type=str, default=None,
help="Unsup. exploration mode: vpc or pred or None")
parser.add_argument('--psPort', default=12222, type=int, help='Port number for parameter server')
parser.add_argument('--delay', default=0, type=int, help='delay start by these many seconds')
parser.add_argument('--pretrain', type=str, default=None, help="Checkpoint dir (generally ..../train/) to load from.")
args = parser.parse_args()
spec = cluster_spec(args.num_workers, 1, args.psPort)
cluster = tf.train.ClusterSpec(spec).as_cluster_def()
def shutdown(signal, frame):
logger.warn('Received signal %s: exiting', signal)
sys.exit(128+signal)
signal.signal(signal.SIGHUP, shutdown)
signal.signal(signal.SIGINT, shutdown)
signal.signal(signal.SIGTERM, shutdown)
if args.job_name == "worker":
server = tf.train.Server(cluster, job_name="worker", task_index=args.task,
config=tf.ConfigProto(intra_op_parallelism_threads=1, inter_op_parallelism_threads=2))
if args.delay > 0:
print('Startup delay in worker: {}s'.format(args.delay))
time.sleep(args.delay)
print('.. wait over !')
run(args, server)
else:
server = tf.train.Server(cluster, job_name="ps", task_index=args.task,
config=tf.ConfigProto(device_filters=["/job:ps"]))
while True:
time.sleep(1000)
if __name__ == "__main__":
tf.app.run()