-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpnpFSSP.cpp
2638 lines (2408 loc) · 78.5 KB
/
pnpFSSP.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include <iostream>
#include <fstream>
#include <sstream>
#include <cstdlib>
#include <string>
#include <array>
#include <vector>
#include <algorithm>
#include <numeric>
#include <ctime>
#include <limits>
#include <cmath>
#include <cassert>
using std::vector;
////////////////////////////////////////////////////////////
// Source code of the algorithms proposed in the article:
// Fast heuristics for minimizing the makespan in non-permutation
// flow shops. Benavides, A.J. and Ritt, M., 2018. Computers &
// Operations Research, 100, pp.230-243.
//
// If you download and read this file, you are accepting that
// it is provided under the GNU General Public License v3.0
// available at http://www.gnu.org/licenses/gpl-3.0.en.html.
////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////
// The only hard-coded parameter selects the benchmark
// by uncommenting only one of the next three lines:
#define TAILLARD
// #define VRF_S
// #define VRF_L
////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////
// Compilation tested with the next flags:
// g++-7 -O2 --static --fast-math -std=c++17 -DNDEBUG
// -Werror=implicit-fallthrough=0 -pedantic -Wall -Wextra -Wcast-align
// -Wcast-qual -Wctor-dtor-privacy -Wdisabled-optimization -Wformat=2
// -Winit-self -Wlogical-op -Wmissing-declarations -Wnoexcept
// -Woverloaded-virtual -Wredundant-decls -Wshadow -Wsign-promo
// -Wstrict-null-sentinel -Wstrict-overflow=5 -Wundef -Werror -Wno-unused
// -Wold-style-cast -Wsign-conversion -Wswitch-default -Wmissing-include-dirs
// pnpFSSP.cpp -o pnpFSSP;
////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////
// Data Types definitions
typedef uint_fast32_t t_time; // 0,..., (n+m)tmax
typedef int_fast32_t t_operation; // 1,2,..., mn // 1: first operation; mn: last operation;
typedef int_fast32_t st_operation; // used to check signed conversions
typedef int_fast16_t t_job; // 0,1,...,n-1 // j = (o-1)/mMach
typedef int_fast8_t t_mach; // 1,2,..., m // m = (o-1)%mMach +1
typedef uint_fast32_t t_size_type; // unsigned value in vector resize and reserve
typedef struct _solution t_solution;
// unfold-for acceleration
#define UNFOLDFOR2( __iters__, __sentences__ ) \
switch ( __iters__ ) \
{ \
case 60: { __sentences__ } \
case 59: { __sentences__ } \
case 58: { __sentences__ } \
case 57: { __sentences__ } \
case 56: { __sentences__ } \
case 55: { __sentences__ } \
case 54: { __sentences__ } \
case 53: { __sentences__ } \
case 52: { __sentences__ } \
case 51: { __sentences__ } \
case 50: { __sentences__ } \
case 49: { __sentences__ } \
case 48: { __sentences__ } \
case 47: { __sentences__ } \
case 46: { __sentences__ } \
case 45: { __sentences__ } \
case 44: { __sentences__ } \
case 43: { __sentences__ } \
case 42: { __sentences__ } \
case 41: { __sentences__ } \
case 40: { __sentences__ } \
case 39: { __sentences__ } \
case 38: { __sentences__ } \
case 37: { __sentences__ } \
case 36: { __sentences__ } \
case 35: { __sentences__ } \
case 34: { __sentences__ } \
case 33: { __sentences__ } \
case 32: { __sentences__ } \
case 31: { __sentences__ } \
case 30: { __sentences__ } \
case 29: { __sentences__ } \
case 28: { __sentences__ } \
case 27: { __sentences__ } \
case 26: { __sentences__ } \
case 25: { __sentences__ } \
case 24: { __sentences__ } \
case 23: { __sentences__ } \
case 22: { __sentences__ } \
case 21: { __sentences__ } \
case 20: { __sentences__ } \
case 19: { __sentences__ } \
case 18: { __sentences__ } \
case 17: { __sentences__ } \
case 16: { __sentences__ } \
case 15: { __sentences__ } \
case 14: { __sentences__ } \
case 13: { __sentences__ } \
case 12: { __sentences__ } \
case 11: { __sentences__ } \
case 10: { __sentences__ } \
case 9: { __sentences__ } \
case 8: { __sentences__ } \
case 7: { __sentences__ } \
case 6: { __sentences__ } \
case 5: { __sentences__ } \
case 4: { __sentences__ } \
case 3: { __sentences__ } \
case 2: { __sentences__ } \
default: { } \
}
typedef uint_fast64_t t_elapsed; // Defined as tenth of a millisecond
static double timeMeasure = 10000.0; // Defined as tenth of a millisecond
inline t_elapsed elapsed(bool reset = false)
{
static std::clock_t start = std::clock();
if ( reset ) start = std::clock();
return (timeMeasure*double(std::clock()-start))/double(CLOCKS_PER_SEC);
}
////////////////////////////////////////////////////////////
// Global definitions
const t_job destroyNCm = 4;
const t_time max_time = std::numeric_limits<t_time>::max();
const t_operation no_op = std::numeric_limits<t_operation>::max();
t_job nJobs; // number of jobs
t_mach mMach = 20; // number of machines
t_operation mnOps; // nJobs * mMach, this is also the last operation;
t_time psum; // total sum of processing times of all operations
static vector < t_job > jobs; // previously used job permutation
static vector < t_time > p; // processing times of operations [1, nJobs * mMach + 1]
static vector < t_time > Me0; // earliest completion times (heads)
static vector < t_time > Mq0; // latest starting times (tails)
static vector < t_time > Me1; // earliest completion time after insertion
static vector < t_time > Mq1; // latest starting time after insertion
static vector < t_time > MC0; // makespan of straight insertions
static vector < t_time > MC1; // makespan of insertions with anticipation
static vector < t_time > _LM; // helper
std::ofstream fout; // out file stream
// NEH-BR insertion points
static vector < vector < t_operation > ::iterator > ins_bj; // best insert positions
static vector < int_fast8_t > ins_xp; // best cross point // operation(s) with the minimal function value TFmin
// time report and time limit fixed controllers
#define TCHK 150
#define TLMT 450
// time report and time limit variable controllers
t_elapsed _timecheck = t_elapsed(TCHK*mnOps); // print information after this execution time
t_elapsed _timelimit = t_elapsed(TLMT*mnOps); // execution time limit
// statistic variables
t_time _max_ls_iters = 1;
t_time _tot_ls_iters = 1;
t_time _max_swap_size = 0;//must be 2*nJobs
////////////////////////////////////////////////////////////
// Solution Structure for NON-PERMUTATION schedules
struct _solution {
t_time Cm;// corresponding Cmax
vector < t_operation > ops; // operation pairs that define a permutation of pseudo jobs .
void print(std::ostream &o);
void __PropagateMF0 ( vector < t_time > ::iterator & me, vector < t_time > ::iterator & lm );
void __PropagateMF ( vector < t_operation > ::iterator & op, vector < t_time > ::iterator & me, vector < t_time > ::iterator & lm );
void __PropagateMB0 ( vector < t_time > ::iterator & me, vector < t_time > ::iterator & lm, vector < t_time > ::iterator & mf, vector < t_time > ::iterator & mq );
t_mach __PropagateMB ( vector < t_operation > ::iterator & op, vector < t_time > ::iterator & me, vector < t_time > ::iterator & lm, vector < t_time > ::iterator & mf, vector < t_time > ::iterator & mq );
void __PropagateFi ( const t_operation & opb, const t_operation & ope );
void _PropagateFi ( const vector < t_operation > ::iterator & opbegin );
void Evaluate();
#ifndef NDEBUG
void Verify();
void VerifyCm();
#endif
inline t_time CalculateCMs ( const t_operation jo );
inline t_time CalculateCMs_NP ( const t_operation jo );
vector < t_operation > ::iterator CalculateBJ( const t_operation jo );
inline t_time CalculateCMs_LJP ( const t_operation jo );
typedef void ( _solution::*_t_priority ) (vector < t_operation > & );
typedef void ( _solution::*_t_InsertJob ) ( const t_operation );
typedef void ( _solution::*_t_LocalSearch ) ();
typedef void ( _solution::*_t_Construct ) (int_fast16_t sp);
template < bool RandomInsertion = true >
inline void InsertJobOp ( const t_operation );
template < bool RandomInsertion = true >
inline void InsertJobOp_NP ( const t_operation );
inline void InsertJobOpFF ( const t_operation );
inline void InsertJobOpFF_NP ( const t_operation );
inline void InsertJobOpLJP ( const t_operation );
inline void DeleteJob( const t_job );
inline void Delete2Jobs( const t_job, const t_job );
inline void DeleteJobs( const vector < t_operation > :: iterator &, const vector < t_operation > :: iterator & );
inline void _NEH_priority ( vector < t_operation > & );
inline void _AD_priority ( vector < t_operation > & );
inline void _ADS_priority ( vector < t_operation > & );
template < _t_InsertJob >
inline void LocalSearch_Insertion();
template < _t_InsertJob >
inline void PairSearch_Insertion();
template < _t_InsertJob, bool RandomInsertion = true >
inline void LocalSearch_PRInsertionAll();
template < _t_InsertJob, bool RandomInsertion = true >
inline void LocalSearch_PRInsertionCrt();
inline void LocalSearch_fastN5_Cm_NP();
template < _t_priority , _t_InsertJob , _t_InsertJob >
inline void Create_NEH_NP(int_fast16_t);
inline void Create_F5_NP(int_fast16_t);
inline void Create_RN_NP(int_fast16_t);
inline void Create_Pa_NP(int_fast16_t);
inline void Create_Pc_NP(int_fast16_t);
template < _t_priority >
inline void Create_BRN_NP(int_fast16_t);
};
////////////////////////////////////////////////////////////
// Load instance file and reserves memory according to size
void load_operations (std::string & file);
void load_operations (std::string & file)
{
t_operation dmy;
std::ifstream fin( file );
fin >> dmy; nJobs = dmy;
fin >> dmy; mMach = dmy;
mnOps = nJobs * mMach;
if (mnOps > 50000 || mnOps < 50) { std::cout << "instance file " << file << " is missing! " << mnOps << " operations!?!?" << std::endl; exit(9999); }
assert (mnOps <= 50000 && mnOps >= 50);
if (mnOps > 50000) return;
p.resize(t_size_type(mnOps + 1));
psum = 0;
for(t_job j = 0; j < nJobs; ++j)
{
t_operation o = j * mMach;
for(t_mach i = 1; i <= mMach; ++i)
{
fin >> dmy;
fin >> dmy;
p [ t_size_type (++o) ] = t_time(dmy);
psum += p [ t_size_type(o) ];
}
}
fin.close();
jobs.resize(t_size_type(nJobs));
iota ( jobs.begin(), jobs.end(), 0 );
t_size_type ReserveSize = t_size_type(mnOps*3/2);
#if defined TAILLARD
if (nJobs == 500) ReserveSize = t_size_type(750*mMach);
else if (nJobs == 200) ReserveSize = t_size_type(340*mMach);
else ReserveSize = t_size_type(180*mMach);
#elif defined VRF_S
ReserveSize = t_size_type(120*mMach);
#elif defined VRF_L
ReserveSize = ( 20 + 221*t_size_type(nJobs)/100 - 7*t_size_type(nJobs)*t_size_type(nJobs)/10000 )*t_size_type(mMach);
#else
ReserveSize = ( 3*t_size_type(nmOps) );
#endif
Me0.resize(ReserveSize); Me1.resize(ReserveSize);
Mq0.resize(ReserveSize); Mq1.resize(ReserveSize);
MC0.resize(ReserveSize); MC1.resize(ReserveSize);
for ( auto me = Me0.begin() - 1, lm = me+mMach; me <= lm;) *(++me) = 0;
ins_bj.reserve(t_size_type(3*nJobs));
ins_xp.reserve(t_size_type(3*nJobs));
}
#ifndef NDEBUG
bool check_ops_order ( vector < t_operation > & ops );
bool check_ops_order ( vector < t_operation > & ops )
{
static vector < t_operation > loJ(501);
loJ.assign(t_size_type(nJobs+1),0);
t_job lj = nJobs;
for ( vector < t_operation > ::iterator o = ops.begin(), _o = ops.end(); o < _o;)
{
t_operation ob = *o;++o;
t_operation oe = *o;++o;
assert ( ob <= oe );
t_operation j = (ob-1)/mMach;
t_operation m = (ob-1)%mMach;
assert ( lj != j );
if ( m )
assert( (loJ[t_size_type(j)] + 1 == ob) );
else
assert ( loJ[t_size_type(j)] == 0 );
loJ[t_size_type(j)] = oe;
lj = j;
}
for ( auto & oe : loJ )
{
if ( oe )
assert ( oe % mMach == 0 );
}
return true;
}
#endif
void t_solution::print(std::ostream &o = fout)
{
o << elapsed() << "\t" << Cm << "\t{";
for ( auto op : ops )
o << " " << op << "," ;
o << "}" << std::endl;
}
////////////////////////////////////////////////////////////
// propagators
inline
void t_solution::__PropagateMF0 ( vector < t_time > ::iterator & me, vector < t_time > ::iterator & lm )
{
lm = Me0.begin() - 1;
me = lm + mMach;
}
inline
void t_solution::__PropagateMF ( vector < t_operation > ::iterator & op, vector < t_time > ::iterator & me, vector < t_time > ::iterator & lm )
{
// needs me, lm defined
t_operation o = *(op);
t_mach mc = (o-1) % mMach; //adjusted
vector < t_time > ::iterator _me = me + mMach;
UNFOLDFOR2 ( mc + 1 , { *(++me) = *(++lm); } );
t_time lt = mc? *me: 0;
vector < t_time > ::iterator t = p.begin() + st_operation(o);
{ if ( lt < *(++lm) ) lt = *lm; lt += *t; *(++me) = lt; }
UNFOLDFOR2 ( *(++op) - o + 1 , { if ( lt < *(++lm) ) lt = *lm; lt += *(++t); *(++me) = lt; } );
UNFOLDFOR2 ( _me - me + 1 , { *(++me) = *(++lm); } );
}
inline
void t_solution::__PropagateMB0 ( vector < t_time > ::iterator & me, vector < t_time > ::iterator & lm, vector < t_time > ::iterator & mf, vector < t_time > ::iterator & mq )
{
++me;
st_operation delta = st_operation(ops.size()/2+1) * mMach;
mq = lm = Mq0.begin() + delta;
mf = Me1.begin() + delta;
UNFOLDFOR2 ( mMach , { *(--mq) = 0; *(--mf) = *(--me); } );
{ *(--mq) = 0; *(--mf) = *(--me); }
}
inline
t_mach t_solution::__PropagateMB ( vector < t_operation > ::iterator & op, vector < t_time > ::iterator & me, vector < t_time > ::iterator & lm, vector < t_time > ::iterator & mf, vector < t_time > ::iterator & mq )
{
// needs me, mq, lm, mf defined
t_operation o = *(op);
t_mach mc = mMach - (o-1) % mMach - 1; // adjusted reversed
vector < t_time > ::iterator _mq = mq - mMach;
UNFOLDFOR2 ( mc + 1 , { *(--mf) = *(--me) + ( *(--mq) = *(--lm) ); } );
// count the times that *mf == Cm and *(mf+mMach) == or != Cm to choose for swap
t_time lt = mc? *mq: 0;
vector < t_time > ::iterator t = p.begin() + st_operation(o);
t_mach fc = 0;
{ if ( lt < *(--lm) ) lt = *lm; lt += *t; *(--mf) = *(--me) + ( *(--mq) = lt ); }
UNFOLDFOR2 ( o - *(--op) + 1 , { if ( lt < *(--lm) ) lt = *lm; lt += *(--t); if ( Cm == *(--me+mMach) + *mq ) ++fc; *(--mf) = *(me) + ( *(--mq) = lt ); } );
UNFOLDFOR2 ( mq - _mq + 1 , { *(--mf) = *(--me) + ( *(--mq) = *(--lm) ); } );
return (fc);
}
inline
void t_solution::__PropagateFi ( const t_operation & opb, const t_operation & ope )
{
vector < t_time > ::iterator t = p.begin() + st_operation(opb);
vector < t_time > ::iterator xe = _LM.begin();
t_time lt;
t_mach mc = (opb-1) % mMach; // mach [0,m-1]
if (mc)
{
xe += mc;
lt = *(xe-1);
if ( lt < *(xe) ) lt = *xe;
lt += *t;
*xe = lt;
}
else
{
*xe += *t;
lt = *xe;
}
UNFOLDFOR2 ( ope - opb + 1, { if ( lt < *(++xe) ) lt = *xe; lt += *(++t); *xe = lt; } );
}
inline
void t_solution::_PropagateFi ( const vector < t_operation > ::iterator & opbegin )
{
// Fills forward competion times.
for ( vector < t_operation > ::iterator op = opbegin, _op = ops.end(); op < _op; op+=2 )
__PropagateFi ( *op, *(op+1) );
Cm = _LM.back();
}
inline
void t_solution::Evaluate()
{
vector < t_operation > ::iterator op = ops.begin();
_LM.assign(t_size_type(mMach), 0);
_PropagateFi( op );
}
#ifndef NDEBUG
void t_solution::VerifyCm()
{
t_time _Cm = Cm;
assert( check_ops_order(ops) );
Evaluate();
assert ( _Cm == Cm );
}
void t_solution::Verify()
{
VerifyCm();
}
#endif
inline
t_time t_solution::CalculateCMs ( const t_operation jo )
{
vector < t_time > ::iterator to, me0, lm, me1, mq0;
auto __PropagateMiB0 = [&] ()
{
mq0 = lm = Mq0.begin() + st_operation(ops.size()/2+1) * mMach;
UNFOLDFOR2 ( mMach, { *(--mq0) = 0; } ); { *(--mq0) = 0; }
};
auto __PropagateMiB = [&] ( t_operation & op )
{
vector < t_time > ::iterator t = p.begin() + st_operation(op);
t_time lt = *(--mq0) = *(--lm) + *t;
UNFOLDFOR2 ( mMach, { if ( lt < *(--lm) ) lt = *lm; *(--mq0) = ( lt += *(--t) ); } );
};
auto __PropagateMiA0 = [&] ()
{
lm = Me0.begin() - 1;
me0 = lm + mMach;
me1 = Me1.begin();
vector < t_time > ::iterator t = to;
t_time lt = *me1 = *t;
t_time mxt = *mq0 + *me1;
UNFOLDFOR2 ( mMach, { t_time cmt = *(++mq0) + ( *(++me1) = ( lt += *(++t) ) ); if ( mxt <= cmt ) mxt = cmt; } );
return mxt;
};
auto __PropagateMiA = [&] ( t_operation & op )
{
vector < t_time > ::iterator jt = to;
vector < t_time > ::iterator t = p.begin() + st_operation(op);
t_time lt = *(++me0) = *(++lm) + *t;
t_time llt = *(++me1) = lt + *(jt);
t_time mxt = *(++mq0) + llt;
UNFOLDFOR2 ( mMach, { if ( lt < *(++lm) ) lt = *lm; lt += *(++t); *(++me0) = lt; if ( llt < lt ) llt = lt; llt += *(++jt); t_time cmt = *(++mq0) + ( *(++me1) = llt ); if ( mxt <= cmt ) mxt = cmt; } );
return mxt;
};
/////////////////// CalculateCMs begins here ///////////////////
t_time TFmin = max_time;
to = p.begin() + st_operation(jo);
// Fills backward completion time (q)
{
__PropagateMiB0 ();
for ( vector < t_operation > ::iterator op = ops.end()-1, _op = ops.begin() - 1; op > _op; op-=2)
__PropagateMiB ( *op );
}
// Fills forward completion times (e) and inserting (f).
{
TFmin = __PropagateMiA0 ();
ins_bj.resize(1);
ins_bj.back() = ops.begin();
for ( vector < t_operation > ::iterator op = ops.begin(), _op = ops.end(); op < _op;)
{
t_time mxt = __PropagateMiA ( *op ); op+=2;
if ( mxt <= TFmin )
{
if ( mxt < TFmin )
{
TFmin = mxt;
ins_bj.clear();
}
ins_bj.push_back(op);
}
}
}
std::reverse(ins_bj.begin(),ins_bj.end());
return TFmin;
}
inline
t_time t_solution::CalculateCMs_NP ( const t_operation jo )
{
vector < t_time > ::iterator to, lm, me0, me1, mq0, mq1, mc0, mc1;
auto __PropagateMiA0 = [&] ()
{
lm = Me0.begin() - 1;
me0 = lm + mMach;
me1 = Me1.begin();
mc0 = MC0.begin();
mc1 = MC1.begin();
vector < t_time > ::iterator t = to;
t_time lt = *(mc0) = *(me1) = *(t);
UNFOLDFOR2 ( mMach , { *(++mc0) = *(++me1) = ( lt += *(++t) ); } );
*(mc1) = 0;
UNFOLDFOR2 ( mMach , { *(++mc1) = 0; } );
};
auto __PropagateMiA = [&] ( vector < t_operation > ::iterator & op )
{
t_operation o = *(op);
t_mach mach = (o-1) % mMach; //adjusted
vector < t_time > ::iterator _me = me0 + mMach;
UNFOLDFOR2 ( mach + 1 , { *(++mc1) = *(++me0) = *(++lm); t_time _t = *(++me1-mMach); *(++mc0) = *(me1) = _t; } )
t_time lt = mach? *me0: 0;
t_time llt = mach? *me1: 0;
vector < t_time > ::iterator jt = to + mach;
vector < t_time > ::iterator t = p.begin() + st_operation(o);
{ if ( lt < *(++lm) ) lt = *lm; lt += *t; *(++mc1) = *(++me0) = lt; if ( llt < lt ) llt = lt; llt += *(jt); *(++mc0) = *(++me1) = llt; }
UNFOLDFOR2 ( *(++op) - o + 1 , { if ( lt < *(++lm) ) lt = *lm; lt += *(++t); *(++mc1) = *(++me0) = lt; if ( llt < lt ) llt = lt; llt += *(++jt); *(++mc0) = *(++me1) = llt; } );
UNFOLDFOR2 ( _me - me0 + 1 , { t_time _t = *(++mc1) = *(++me0) = *(++lm); if ( llt < _t ) llt = _t; llt += *(++jt); *(++mc0) = *(++me1) = llt; } );
};
auto __PropagateMiB0 = [&] ()
{
st_operation delta = mc0 - MC0.begin();
assert (delta == st_operation((ops.size()/2+1)) * mMach - 1);
mq0 = Mq0.begin() + delta; lm = mq0 + 1;
mq1 = Mq1.begin() + delta;
mc0 -= mMach - 1;
*(mq0) = 0;
UNFOLDFOR2 ( mMach , { *(--mq0) = 0; } );
to += mMach - 1;
vector < t_time > ::iterator t = to;
t_time lt = *(mq1) = *(t); *(mc1) += lt;
UNFOLDFOR2 ( mMach , { *(--mq1) = ( lt += *(--t) ); *(--mc1) += lt; } );
};
auto __PropagateMiB = [&] ( vector < t_operation > ::iterator & op )
{
t_time mxt = 0;
t_operation o = *(op);
t_mach mach = mMach - (o-1) % mMach - 1; // adjusted reversed
vector < t_time > ::iterator _mq = mq0 - mMach;
UNFOLDFOR2 ( mach + 1 , { *(--mc0) += ( *(--mq0) = *(--lm) ); if ( mxt <= *mc0 ) mxt = *mc0; t_time _t = *(--mq1 + mMach); *(--mc1) += ( *(mq1) = _t ); } );
t_time lt = mach? *mq0: 0;
t_time llt = mach? *mq1: 0;
vector < t_time > ::iterator jt = to - mach;
vector < t_time > ::iterator t = p.begin() + st_operation(o);
{ if ( lt < *(--lm) ) lt = *lm; lt += *t; *(--mc0) += ( *(--mq0) = lt ); if ( mxt <= *mc0 ) mxt = *mc0; if ( llt < lt ) llt = lt; llt += *(jt); *(--mc1) += ( *(--mq1) = llt ); }
UNFOLDFOR2 ( o - *(--op) + 1 , { if ( lt < *(--lm) ) lt = *lm; lt += *(--t); *(--mc0) += ( *(--mq0) = lt ); if ( mxt <= *mc0 ) mxt = *mc0; if ( llt < lt ) llt = lt; llt += *(--jt); *(--mc1) += ( *(--mq1) = llt ); } );
UNFOLDFOR2 ( mq0 - _mq + 1 , { t_time _t = *(--mq0) = *(--lm); *(--mc0) += _t; if ( mxt <= *mc0 ) mxt = *mc0; if ( llt < _t ) llt = _t; llt += *(--jt); *(--mc1) += ( *(--mq1) = llt ); } );
return mxt;
};
auto __PropagateM_LxXxR = [&] ( )
{
// LeABq
t_time ltl = *mc1;
{ if (ltl < *(++mc1)) ltl = *(mc1); *(lm) = ltl; }
UNFOLDFOR2 ( mMach - 3 , { if (ltl < *(++mc1)) ltl = *(mc1); *(++lm) = ltl; } );
{ if (ltl < *(++mc1)) ltl = *(mc1); if (ltl < *(++mc1)) ltl = *(mc1); }
// eBAqR
t_time lt = *(mc0);
{ if (lt < *(--mc0)) lt = *mc0; if (*(lm) < lt) *lm = lt; mc1 = lm;}
UNFOLDFOR2 ( mMach - 3 , { if (lt < *(--mc0)) lt = *mc0; if (*(--lm) < lt) *lm = lt; if (*mc1 > *lm) mc1 = lm; } );
{ if (lt < *(--mc0)) lt = *mc0; if (lt < *(--mc0)) lt = *mc0; }
return ( ltl < lt )? ltl: lt;
};
/////////////////// CalculateCMs begins here ///////////////////
t_time TFmin;
to = p.begin() + st_operation(jo);
{
__PropagateMiA0 ();
for ( vector < t_operation > ::iterator op = ops.begin(), _op = ops.end(); op < _op; ++op)
__PropagateMiA ( op );
TFmin = *(me1);
}
ins_bj.resize(1);
ins_xp.resize(1);
ins_bj.back() = ops.end(); // means after all jobs
ins_xp.back() = 0;
// Fills backward completion time (q), (M) over (f), and Mi
{
__PropagateMiB0 ();
for ( vector < t_operation > ::iterator op = ops.end()-1, _op = ops.begin(); op > _op; --op)
{
t_time mxt = __PropagateMiB ( op );
if ( mxt <= TFmin )
{
if ( mxt < TFmin )
{
TFmin = mxt;
ins_bj.clear();
ins_xp.clear();
}
ins_bj.push_back(op);
ins_xp.push_back(0);
}
}
}
/////////////////// Evaluate non-permutation insertions ///////////////////
static vector< vector < t_time > ::iterator > mnm;
static vector < t_time > EQ, MX;
mnm.reserve(t_size_type(mMach-3));
EQ.resize(t_size_type(mMach-3));
MX.resize(t_size_type(mMach-3));
st_operation delta = st_operation((ops.size()/2 + 1)) * mMach;
for ( vector < t_operation > ::iterator cop = ops.end(), _cop = ops.begin(); cop > _cop; )
{
delta -= mMach;
t_operation oe = *(--cop);
t_operation ob = *(--cop);
// skip if less than 3 ops
if ( ob + 1 >= oe ) continue;
mc0 = MC0.begin() + delta - 1;
mc1 = MC1.begin() + delta;
lm = MX.begin();
t_time mnmx = __PropagateM_LxXxR ();
if ( *mc1 < mnmx )
{
t_time lt;
if ( *mc1 > TFmin ) continue;
{
t_mach m_o = (ob - 1) % mMach;
if ( m_o == 0 ) ++m_o;
lm = MX.begin() + m_o - 1;
me1 = Me1.begin() + delta + m_o;
mq1 = Mq1.begin() + delta - mMach + m_o + 1;
t_mach m_e = (oe - 2) % mMach + 3;
if ( m_e > mMach ) m_e = mMach;
m_e -= 3;
{ t_time _t = *(me1) + *(mq1); if ( _t > *(lm) ) *lm = _t; mnm.clear (); mnm.push_back(lm); }
lt = *lm;
UNFOLDFOR2 ( m_e - m_o + 1 , { t_time _t = *(++me1) + *(++mq1); if ( _t > *(++lm) ) *lm = _t; if (lt > *lm) { lt = *lm; mnm.clear(); mnm.push_back(lm); } else if ( lt == *lm) mnm.push_back(lm); } );
}
if ( lt > TFmin ) continue;
{
if ( lt < TFmin )
{
TFmin = lt;
ins_bj.clear();
ins_xp.clear();
for ( vector< vector < t_time > ::iterator >::iterator m = mnm.end()-1, _m = mnm.begin(); m >=_m; --m )
{
ins_bj.push_back(cop);
ins_xp.push_back(*m - MX.end() - 1); //split operations in this machine
}
}
else if (ins_xp.back()) {
for ( vector< vector < t_time > ::iterator >::iterator m = mnm.end()-1, _m = mnm.begin(); m >=_m; --m )
{
ins_bj.push_back(cop);
ins_xp.push_back(*m - MX.end() - 1); //split operations in this machine
}
}
}
continue;
}
mc0 = MC1.begin() + delta + mMach - 1;
mc1 = MC0.begin() + delta - mMach;
lm = MX.begin();
t_time mnmz = __PropagateM_LxXxR ();
if ( *mc1 >= mnmz ) continue;
{
if ( *mc1 > TFmin ) continue;
t_mach m_e = (oe - 1) % mMach;
{
vector < t_time > ::iterator t = p.begin() + st_operation(oe);
mq1 = Mq1.begin() + delta + m_e; --m_e;
t_time lt = *mq1;
m_e += 3;
if ( m_e > mMach)
{
m_e = mMach;
lt += *t; --t;
if ( lt < *(--mq1) ) lt = *mq1;
}
m_e -= 3;
mq0 = EQ.begin() + m_e - 1;
t_mach m_o = (ob - 1) % mMach;
if ( m_o == 0 ) ++m_o;
{ lt += *(t); *(mq0) = lt; }
UNFOLDFOR2 ( m_e - m_o + 1 , { if ( lt < *(--mq1) ) lt = *mq1; lt += *(--t); *(--mq0) = lt; } );
}
t_time lt;
{
vector < t_time > ::iterator t = p.begin() + st_operation(ob);
t_mach m_o = (ob - 1) % mMach;
me1 = Me1.begin() + delta - mMach + m_o;
t_time lf = *me1;
if ( m_o == 0 )
{
++m_o;
lf += *t; ++t;
if ( lf < *(++me1) ) lf = *me1;
}
assert ( mq0 == EQ.begin() + m_o - 1 );
lm = MX.begin() + m_o - 1;
{ lf += *(t); t_time _t = *(mq0) + lf; if ( _t > *(lm) ) *lm = _t; mnm.clear (); mnm.push_back(lm);}
lt = *lm;
UNFOLDFOR2 ( m_e - m_o + 1 , { if ( lf < *(++me1) ) lf = *me1; lf += *(++t); t_time _t = *(++mq0) + lf; if ( _t > *(++lm) ) *lm = _t; if (lt > *lm) { lt = *lm; mnm.clear(); mnm.push_back(lm); } else if ( lt == *lm) mnm.push_back(lm); } );
}
if ( lt > TFmin ) continue;
{
if ( lt < TFmin )
{
TFmin = lt;
ins_bj.clear();
ins_xp.clear();
for ( vector< vector < t_time > ::iterator >::iterator m = mnm.end()-1, _m = mnm.begin(); m >=_m; --m )
{
ins_bj.push_back(cop);
ins_xp.push_back(*m - MX.begin() + 2); // split operations in this machine
}
}
else if (ins_xp.back())
{
for ( vector< vector < t_time > ::iterator >::iterator m = mnm.end()-1, _m = mnm.begin(); m >=_m; --m )
{
ins_bj.push_back(cop);
ins_xp.push_back(*m - MX.begin() + 2); // split operations in this machine
}
}
}
continue;
}
}
return TFmin;
}
inline
vector < t_operation > ::iterator t_solution::CalculateBJ( const t_operation jo )
{
if ( ins_bj.size() == 1 ) return ins_bj.front();
double mit = std::numeric_limits<double>::max();
vector < t_operation > ::iterator bj;
for ( vector < t_operation > ::iterator & cj : ins_bj )
{
double cit = 0.0;
double ddd;
st_operation df = ( cj - ops.begin() ) * mMach / 2;
t_operation op = *(cj);
vector < t_time > ::iterator
ti = p.begin() + jo,
tp = p.begin() + *(cj),
me = Me0.begin() + df + mMach,
mf = Me1.begin() + df;
if ( cj < ops.end() - 1 )
{
t_time lf = *mf + *tp;
UNFOLDFOR2 ( mMach, { st_operation tcit = st_operation ( *(++mf) + *(++tp) ) - st_operation ( *(++me) ) - st_operation ( *(++ti) ); if (lf > *mf) tcit += st_operation(lf) - st_operation(*mf); else lf = *mf; lf += *tp; ddd = double(tcit); ddd /= double(nJobs); ddd*=(nJobs-t_job(ops.size()/2)-1); cit += ddd; } );
}
else
{
me-=mMach;
UNFOLDFOR2 ( mMach, { ddd = double (*(++mf) - *(++me) - *(++ti)); ddd /= double(nJobs); ddd *= (nJobs-t_job(ops.size()/2)-1); cit += ddd; } );
}
if ( cit <= mit )
{
mit = cit;
bj = cj;
}
}
return bj;
}
inline
t_time t_solution::CalculateCMs_LJP ( const t_operation jo )
{
vector < t_time > ::iterator to, me0, lm, me1, mq0;
t_time TFmin = max_time;
auto __PropagateMiB0 = [&] ()
{
mq0 = lm = Mq0.begin() + st_operation(ops.size()/2+1) * mMach;
UNFOLDFOR2 ( mMach, { *(--mq0) = 0; } ); { *(--mq0) = 0; }
};
auto __PropagateMiB = [&] ( t_operation & op )
{
vector < t_time > ::iterator t = p.begin() + st_operation(op);
t_time lt = *(--mq0) = *(--lm) + *t;
UNFOLDFOR2 ( mMach, { if ( lt < *(--lm) ) lt = *lm; *(--mq0) = ( lt += *(--t) ); } );
};
auto __PropagateMiA0 = [&] ()
{
lm = Me0.begin() - 1;
me0 = lm + mMach;
me1 = Me1.begin();
vector < t_time > ::iterator t = to;
_LM.resize(t_size_type(mMach));
vector < t_time > ::iterator ff = _LM.begin();
t_time lt = *ff = *me1 = *t;
t_time mxt = *mq0 + *me1;
UNFOLDFOR2 ( mMach, { t_time cmt = *(++mq0) + ( *(++ff) = *(++me1) = ( lt += *(++t) ) ); if ( mxt <= cmt ) mxt = cmt; } );
return mxt;
};
auto __PropagateMiA = [&] ( t_operation & op )
{
vector < t_time > ::iterator jt = to;
vector < t_time > ::iterator t = p.begin() + st_operation(op);
t_time lt = *(++me0) = *(++lm) + *t;
t_time llt = *(++me1) = lt + *(jt);
t_time mxt = *(++mq0) + llt;
UNFOLDFOR2 ( mMach, { if ( lt < *(++lm) ) lt = *lm; lt += *(++t); *(++me0) = lt; if ( llt < lt ) llt = lt; llt += *(++jt); t_time cmt = *(++mq0) + ( *(++me1) = llt ); if ( mxt <= cmt ) mxt = cmt; } );
return mxt;
};
auto __CalculatePriority = [&] ( vector < t_time > ::iterator ff )
{
vector < double > G; G.resize(t_size_type(mMach));
vector < uint_fast16_t > W; W.resize(t_size_type(mMach));
vector < t_time > ::iterator cq = mq0 - mMach + 1;
vector < t_time > ::iterator cf = ff;
vector < double > ::iterator cg = G.begin();
double ag = *cg = double (TFmin - *cf - *cq);
UNFOLDFOR2 ( mMach, { ag += ( *(++cg) = double ( TFmin - *(++cf) - *(++cq) ) ); } );
{
vector < uint_fast16_t > O; O.resize(t_size_type(mMach));
iota(O.begin(),O.end(),0);
std::stable_sort( O.begin(), O.end(),
[&G](const uint_fast16_t & i, const uint_fast16_t & j) { return (G[i]>G[j] ||(G[i]==G[j] && i>j)); } );
for ( uint_fast8_t i = 0 ; i < uint_fast8_t(mMach); ++i ) W[O[i]] = i;
}
cf = ff;
cg = G.begin();
auto cw = W.begin();
ag /= mMach;
t_time ttt = (*cf) * (*cw);
double ttmf = ( (*cg > ag) ? *cg - ag : ag - *cg );
UNFOLDFOR2 ( mMach, { ttt += *(++cf) * *(++cw); ttmf += ((*(++cg) > ag) ? *cg - ag : ag - *cg) ; } );
ttmf = double(ttt) + 3.4 * ttmf / double(mMach);
cq = mq0 - mMach + 1;
cf = _LM.begin();
cg = G.begin();
ag = *cg = double (TFmin - *cf - *cq);
UNFOLDFOR2 ( mMach, { ag += ( *(++cg) = double ( TFmin - *(++cf) - *(++cq) ) ); } );
cf = _LM.begin();
cg = G.begin();
cw = W.begin();
ag /= mMach;
ttt = (*cf) * (*cw);
double ttff = ( (*cg > ag) ? *cg - ag : ag - *cg );
UNFOLDFOR2 ( mMach, { ttt += *(++cf) * *(++cw); ttff += ((*(++cg) > ag) ? *cg - ag : ag - *cg) ; } );
ttff = double(ttt) + 3.4 * ttff / double(mMach);
return ( ttmf < ttff );
};
/////////////////// CalculateCMs begins here ///////////////////
TFmin = max_time;
to = p.begin() + st_operation(jo);
// Fills backward completion time (q)
{
__PropagateMiB0 ();
for ( vector < t_operation > ::iterator op = ops.end()-1, _op = ops.begin() - 1; op > _op; op-=2)
__PropagateMiB ( *op );
}
// Fills forward completion times (e) and inserting (f).
{
TFmin = __PropagateMiA0 ();
ins_bj.resize(1);
ins_bj.back() = ops.begin();
for ( vector < t_operation > ::iterator op = ops.begin(), _op = ops.end(); op < _op;)
{
t_time mxt = __PropagateMiA ( *op ); op+=2;
if ( mxt < TFmin )
{
TFmin = mxt;
ins_bj.back() = (op);
std::copy ( me1-mMach+1, me1+1, _LM.begin() ); // copy last F into LM;
}
else// ( mxt >= TFmin )
{
// Calculate F'' in LM
vector < t_time > ::iterator ff = _LM.begin();
vector < t_time > ::iterator t = p.begin() + *(op-2);
t_time lt = ( *(ff) += *t );
UNFOLDFOR2 ( mMach, { if ( lt < *(++ff) ) lt = *ff; lt += *(++t); *(ff) = lt; } );
if ( mxt == TFmin )
{
// Calculate p for F and F''
if ( __CalculatePriority ( me1 - mMach + 1 ) )
{
ins_bj.back() = (op);
std::copy ( me1-mMach+1, me1+1, _LM.begin() ); // copy last F into LM;
}
}
}
}
}
return TFmin;
}
template < const bool RandomInsertion = true >
inline
void t_solution::InsertJobOp ( const t_operation jo )
{
Cm = CalculateCMs ( jo );
t_operation _jo = jo + mMach - 1;
vector < vector < t_operation > ::iterator > ::iterator bj;
if ( RandomInsertion ) bj = ins_bj.begin() + rand()%st_operation(ins_bj.size());
else bj = ins_bj.end() - 1;
// insert before a block or after all operations
ops.insert ( *bj, { jo , _jo } );
#ifndef NDEBUG
assert( check_ops_order(ops) );
VerifyCm();
#endif
}
template < bool RandomInsertion = true >
inline
void t_solution::InsertJobOp_NP ( const t_operation jo )
{
#ifndef NDEBUG
auto lop = ops;
#endif
Cm = CalculateCMs_NP ( jo );
t_operation _jo = jo + mMach - 1;
assert ( INT_FAST16_MAX > ins_bj.size() );