-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathanti_spoof_face_recognition.py
367 lines (285 loc) · 12 KB
/
anti_spoof_face_recognition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
# -*- coding: utf-8 -*-
"""Face_recognition.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1jdFqlm_VPvZECTHPI-S6r1L1ALiawVlx
"""
# !pip install Pillow
import os
from PIL import Image
import numpy as np
from keras.models import model_from_json
from keras.models import Sequential
from keras.layers import Conv2D
from keras.layers import AveragePooling2D, MaxPooling2D
from keras.layers import Flatten
from keras.layers import Dense
from keras.models import model_from_json
from keras.preprocessing.image import ImageDataGenerator
from scipy.ndimage import imread
from scipy.misc import imresize, imsave
# !wget https://raw.githubusercontent.com/niravnb/Anti-Spoofing-Facial-Recognition/master/dataset.zip
# !unzip dataset.zip
IMG_SIZE = 24
def collect():
train_datagen = ImageDataGenerator(
rescale=1./255,
shear_range=0.2,
horizontal_flip=True,
)
val_datagen = ImageDataGenerator(
rescale=1./255,
shear_range=0.2,
horizontal_flip=True, )
train_generator = train_datagen.flow_from_directory(
directory="dataset/train",
target_size=(IMG_SIZE, IMG_SIZE),
color_mode="grayscale",
batch_size=32,
class_mode="binary",
shuffle=True,
seed=42
)
val_generator = val_datagen.flow_from_directory(
directory="dataset/val",
target_size=(IMG_SIZE, IMG_SIZE),
color_mode="grayscale",
batch_size=32,
class_mode="binary",
shuffle=True,
seed=42
)
return train_generator, val_generator
def save_model(model):
model.save('eye_status_classifier.h5')
from tensorflow.keras.models import load_model
def load_pretrained_model():
model = load_model('eye_status_classifier.h5')
model.summary()
return model
def train(train_generator, val_generator):
STEP_SIZE_TRAIN=train_generator.n//train_generator.batch_size
STEP_SIZE_VALID=val_generator.n//val_generator.batch_size
print('[LOG] Intialize Neural Network')
model = Sequential()
model.add(Conv2D(filters=6, kernel_size=(3, 3), activation='relu', input_shape=(IMG_SIZE,IMG_SIZE,1)))
model.add(MaxPooling2D())
model.add(Conv2D(filters=16, kernel_size=(3, 3), activation='relu'))
model.add(MaxPooling2D())
model.add(Conv2D(filters=32, kernel_size=(3, 3), activation='relu'))
model.add(MaxPooling2D())
model.add(Flatten())
model.add(Dense(units=120, activation='relu'))
model.add(Dense(units=84, activation='relu'))
model.add(Dense(units=1, activation = 'sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit_generator(generator=train_generator,
steps_per_epoch=STEP_SIZE_TRAIN,
validation_data=val_generator,
validation_steps=STEP_SIZE_VALID,
epochs=20
)
save_model(model)
def predict(img, model):
img = Image.fromarray(img, 'RGB').convert('L')
img = imresize(img, (IMG_SIZE,IMG_SIZE)).astype('float32')
img /= 255
img = img.reshape(1,IMG_SIZE,IMG_SIZE,1)
prediction = model.predict(img)
if prediction < 0.1:
prediction = 'closed'
elif prediction > 0.90:
prediction = 'open'
else:
prediction = 'idk'
return prediction
def evaluate(X_test, y_test):
model = load_model()
print('Evaluate model')
loss, acc = model.evaluate(X_test, y_test, verbose = 0)
print(acc * 100)
# train_generator , val_generator = collect()
# train(train_generator,val_generator)
# !sudo apt install cmake
# !pip3 install face_recognition
import os
import cv2
import face_recognition
import numpy as np
from tqdm import tqdm
from collections import defaultdict
from imutils.video import VideoStream
def init():
face_cascPath = 'haarcascade_frontalface_alt.xml'
# face_cascPath = 'lbpcascade_frontalface.xml'
open_eye_cascPath = 'haarcascade_eye_tree_eyeglasses.xml'
left_eye_cascPath = 'haarcascade_lefteye_2splits.xml'
right_eye_cascPath ='haarcascade_righteye_2splits.xml'
dataset = 'faces'
face_detector = cv2.CascadeClassifier(face_cascPath)
open_eyes_detector = cv2.CascadeClassifier(open_eye_cascPath)
left_eye_detector = cv2.CascadeClassifier(left_eye_cascPath)
right_eye_detector = cv2.CascadeClassifier(right_eye_cascPath)
model = load_pretrained_model()
print("[LOG] Collecting images ...")
images = []
for direc, _, files in tqdm(os.walk(dataset)):
for file in files:
if file.endswith("jpg"):
images.append(os.path.join(direc,file))
return (model,face_detector, open_eyes_detector, left_eye_detector,right_eye_detector, images)
def process_and_encode(images):
# initialize the list of known encodings and known names
known_encodings = []
known_names = []
print("[LOG] Encoding faces ...")
for image_path in tqdm(images):
# Load image
image = cv2.imread(image_path)
# Convert it from BGR to RGB
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# detect face in the image and get its location (square boxes coordinates)
boxes = face_recognition.face_locations(image, model='cnn')
# Encode the face into a 128-d embeddings vector
encoding = face_recognition.face_encodings(image, boxes)
# the person's name is the name of the folder where the image comes from
name = image_path.split(os.path.sep)[-2]
if len(encoding) > 0 :
known_encodings.append(encoding[0])
known_names.append(name)
encodings = {"encodings": known_encodings, "names": known_names}
np.save('encodings.npy', encodings)
return encodings
def isBlinking(history, maxFrames):
""" @history: A string containing the history of eyes status
where a '1' means that the eyes were closed and '0' open.
@maxFrames: The maximal number of successive frames where an eye is closed """
for i in range(maxFrames):
pattern = '1' + '0'*(i+1) + '1'
if pattern in history:
return True
return False
def detect_and_display(model, video_capture, face_detector, open_eyes_detector, left_eye_detector, right_eye_detector, data, eyes_detected):
frame = video_capture.read()
# resize the frame
# frame = cv2.resize(frame, (0, 0), fx=0.9, fy=0.9)
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# Detect faces
faces = face_detector.detectMultiScale(
gray,
scaleFactor=1.2,
minNeighbors=5,
minSize=(50, 50),
flags=cv2.CASCADE_SCALE_IMAGE
)
# for each detected face
for (x,y,w,h) in faces:
# Encode the face into a 128-d embeddings vector
encoding = face_recognition.face_encodings(rgb, [(y, x+w, y+h, x)])[0]
# Compare the vector with all known faces encodings
matches = face_recognition.compare_faces(data["encodings"], encoding)
# For now we don't know the person name
name = "Unknown"
# If there is at least one match:
if True in matches:
matchedIdxs = [i for (i, b) in enumerate(matches) if b]
counts = {}
for i in matchedIdxs:
name = data["names"][i]
counts[name] = counts.get(name, 0) + 1
# determine the recognized face with the largest number of votes
name = max(counts, key=counts.get)
face = frame[y:y+h,x:x+w]
gray_face = gray[y:y+h,x:x+w]
eyes = []
# Eyes detection
# check first if eyes are open (with glasses taking into account)
open_eyes_glasses = open_eyes_detector.detectMultiScale(
gray_face,
scaleFactor=1.1,
minNeighbors=5,
minSize=(30, 30),
flags = cv2.CASCADE_SCALE_IMAGE
)
# if open_eyes_glasses detect eyes then they are open
if len(open_eyes_glasses) == 2:
eyes_detected[name]+='1'
for (ex,ey,ew,eh) in open_eyes_glasses:
cv2.rectangle(face,(ex,ey),(ex+ew,ey+eh),(0,255,0),2)
# otherwise try detecting eyes using left and right_eye_detector
# which can detect open and closed eyes
else:
# separate the face into left and right sides
left_face = frame[y:y+h, x+int(w/2):x+w]
left_face_gray = gray[y:y+h, x+int(w/2):x+w]
right_face = frame[y:y+h, x:x+int(w/2)]
right_face_gray = gray[y:y+h, x:x+int(w/2)]
# Detect the left eye
left_eye = left_eye_detector.detectMultiScale(
left_face_gray,
scaleFactor=1.1,
minNeighbors=5,
minSize=(30, 30),
flags = cv2.CASCADE_SCALE_IMAGE
)
# Detect the right eye
right_eye = right_eye_detector.detectMultiScale(
right_face_gray,
scaleFactor=1.1,
minNeighbors=5,
minSize=(30, 30),
flags = cv2.CASCADE_SCALE_IMAGE
)
eye_status = '1' # we suppose the eyes are open
# For each eye check wether the eye is closed.
# If one is closed we conclude the eyes are closed
for (ex,ey,ew,eh) in right_eye:
color = (0,255,0)
pred = predict(right_face[ey:ey+eh,ex:ex+ew],model)
if pred == 'closed':
eye_status='0'
color = (0,0,255)
cv2.rectangle(right_face,(ex,ey),(ex+ew,ey+eh),color,2)
for (ex,ey,ew,eh) in left_eye:
color = (0,255,0)
pred = predict(left_face[ey:ey+eh,ex:ex+ew],model)
if pred == 'closed':
eye_status='0'
color = (0,0,255)
cv2.rectangle(left_face,(ex,ey),(ex+ew,ey+eh),color,2)
eyes_detected[name] += eye_status
# Each time, we check if the person has blinked
# If yes, we display its name
# if len(eyes_detected[name]) < 3:
# cv2.rectangle(frame, (x, y), (x+w, y+h), (255, 0, 0), 2)
# # Display name
# y = y - 15 if y - 15 > 15 else y + 15
# cv2.putText(frame, 'Processing if '+name+' is real or fake', (x, y), cv2.FONT_HERSHEY_SIMPLEX,0.75, (255, 0, 0), 2)
# else:
if isBlinking(eyes_detected[name],3):
cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2)
# Display name
y = y - 15 if y - 15 > 15 else y + 15
cv2.putText(frame, 'Real: '+name, (x, y), cv2.FONT_HERSHEY_SIMPLEX,0.75, (0, 255, 0), 2)
# eyes_detected[name] = '111'
else:
if len(eyes_detected[name]) > 20:
cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 0, 255), 2)
# Display name
y = y - 15 if y - 15 > 15 else y + 15
cv2.putText(frame, 'Fake: '+name, (x, y), cv2.FONT_HERSHEY_SIMPLEX,0.75, (0, 0, 255), 2)
return frame
(model, face_detector, open_eyes_detector,left_eye_detector,right_eye_detector, images) = init()
# data = process_and_encode(images)
data = np.load('encodings.npy',allow_pickle='TRUE').item()
print("[LOG] Opening webcam ...")
video_capture = VideoStream(src=0).start()
eyes_detected = defaultdict(str)
while True:
frame = detect_and_display(model, video_capture, face_detector, open_eyes_detector,left_eye_detector,right_eye_detector, data, eyes_detected)
cv2.imshow("Eye-Blink based Liveness Detection for Facial Recognition", frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cv2.destroyAllWindows()
video_capture.stop()