forked from darthbhyrava/forum_classifier
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdoc_helper.py
55 lines (48 loc) · 1.39 KB
/
doc_helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import numpy as np
import re
import itertools
from collections import Counter
import csv
train_file = "./dataset/ICHI2016-TrainData.tsv"
test_file = "./dataset/new_ICHI2016-TestData_label.tsv"
def load_data_and_labels(data_file=train_file):
"""
Loads data from files, splits the data into words and generates labels.
Returns split sentences and labels.
"""
"""
There are 7 categories -
1. DEMO
2. DISE
3. TRMT
4. GOAL
5. PREG
6. FMLY
7. SOCL
"""
d = {}
d['DEMO'] = [1, 0, 0, 0, 0, 0, 0]
d['DISE'] = [0, 1, 0, 0, 0, 0, 0]
d['TRMT'] = [0, 0, 1, 0, 0, 0, 0]
d['GOAL'] = [0, 0, 0, 1, 0, 0, 0]
d['PREG'] = [0, 0, 0, 0, 1, 0, 0]
d['FAML'] = [0, 0, 0, 0, 0, 1, 0]
d['SOCL'] = [0, 0, 0, 0, 0, 0, 1]
max_len = -1
#Load data from files
samples = []
with open(data_file, 'rb') as csvfile:
spamreader = csv.reader(csvfile, delimiter='\t', quotechar='|')
for i, row in enumerate(spamreader):
if (row[0] == "Category"):
continue
print (i, row[1])
#samples.append([row[0], row[2]])
#getting class and title = row[0] and row[1] respectively
samples.append([row[1], row[2], row[0]])
#split by words
return samples
if __name__ == "__main__":
s = load_data_and_labels()
s2 = load_data_and_labels(test_file)
print("Done")