-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patha2c.py
167 lines (142 loc) · 4.97 KB
/
a2c.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.distributions import Categorical
from torch.autograd import Variable
from itertools import count
import numpy as np
import math
import random
import os
import gym
# init a task generator for data fetching
env = gym.make("CartPole-v0")
## Hyper Parameters
STATE_DIM = env.observation_space.shape[0]
ACTION_DIM = env.action_space.n
SAMPLE_NUMS = 100
FloatTensor = torch.FloatTensor
LongTensor = torch.LongTensor
ByteTensor = torch.ByteTensor
Tensor = FloatTensor
def init_weights(m):
if type(m) == nn.Linear:
nn.init.xavier_uniform_(m.weight)
m.bias.data.fill_(0.01)
class ActorNetwork(nn.Module):
def __init__(self,state_dim,action_dim,hidden_size):
super(ActorNetwork, self).__init__()
self.fc1 = nn.Linear(state_dim,hidden_size)
self.fc2 = nn.Linear(hidden_size,hidden_size)
self.fc3 = nn.Linear(hidden_size,action_dim)
self.apply(init_weights)
def forward(self,x):
out = F.relu(self.fc1(x))
out = F.relu(self.fc2(out))
out = F.log_softmax(self.fc3(out), dim=1)
dist = Categorical(out)
return dist
class ValueNetwork(nn.Module):
def __init__(self,state_dim,action_dim,hidden_size):
super(ValueNetwork, self).__init__()
self.fc1 = nn.Linear(state_dim,hidden_size)
self.fc2 = nn.Linear(hidden_size,hidden_size)
self.fc3 = nn.Linear(hidden_size,action_dim)
self.apply(init_weights)
def forward(self,x):
out = F.relu(self.fc1(x))
out = F.relu(self.fc2(out))
out = self.fc3(out)
return out
# init value network
value_network = ValueNetwork(STATE_DIM,1,64)
value_network_optim = torch.optim.Adam(value_network.parameters(),lr=0.001)
# init actor network
actor_network = ActorNetwork(STATE_DIM,ACTION_DIM,64)
actor_network_optim = torch.optim.Adam(actor_network.parameters(),lr = 0.001)
def test_env(vis=False):
state = env.reset()
if vis: env.render()
done = False
total_reward = 0
while not done:
dist = actor_network(FloatTensor([state]))
action = dist.sample()
next_state, reward, done, _ = env.step(action.cpu().numpy()[0])
state = next_state
if vis: env.render()
total_reward += reward
return total_reward
def roll_out(sample_nums):
state = env.reset()
states = []
actions = []
rewards = []
is_done = False
final_r = 0
for step in range(sample_nums):
states.append(state)
dist = actor_network(Variable(torch.Tensor([state])))
action = dist.sample()
actions.append(action)
action = action.cpu().numpy()
next_state,reward,done,_ = env.step(action[0])
rewards.append(reward)
state = next_state
if done:
is_done = True
break
if not is_done:
final_r = value_network(Variable(torch.Tensor([state])))
return states,actions,rewards,step,final_r
def update_network(states, actions, rewards, final_r):
actions_var = torch.cat(actions)
states_var = Variable(FloatTensor(states).view(-1,STATE_DIM))
# train actor network
actor_network_optim.zero_grad()
dist = actor_network(states_var)
log_probs = dist.log_prob(actions_var)
vs = value_network(states_var).detach()
# calculate qs
qs = Variable(torch.Tensor(discount_reward(rewards,0.99, final_r)))
advantages = qs - vs
actor_network_loss = - torch.mean(torch.sum(log_probs * advantages))
actor_network_loss.backward()
actor_network_optim.step()
# train value network
value_network_optim.zero_grad()
target_values = qs
values = value_network(states_var)
criterion = nn.MSELoss()
value_network_loss = criterion(values,target_values.unsqueeze(1))
value_network_loss.backward()
value_network_optim.step()
def discount_reward(r, gamma, final_r):
discounted_r = np.zeros_like(r)
running_add = final_r
for t in reversed(range(0, len(r))):
running_add = running_add * gamma + r[t]
discounted_r[t] = running_add
return discounted_r
def main():
running_reward = 10
i_episode = 0
MAX_EPISODES = 3000
early_stop = False
test_rewards = []
threshold_reward = env.spec.reward_threshold
while i_episode < MAX_EPISODES and not early_stop:
states,actions,rewards,steps,final_r = roll_out(SAMPLE_NUMS)
running_reward = running_reward * 0.99 + steps * 0.01
update_network(states,actions,rewards,final_r)
if i_episode % 50 == 0:
test_reward = np.mean([test_env() for _ in range(10)])
test_rewards.append(test_reward)
print ('EPISODE :- ', i_episode)
print("TEST REWARD :- ", test_reward)
if test_reward > threshold_reward: early_stop = True
i_episode += 1
test_env(True)
env.close()
if __name__ == '__main__':
main()