-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpg.py
133 lines (114 loc) · 3.88 KB
/
pg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.distributions import Categorical
from torch.autograd import Variable
from itertools import count
import numpy as np
import math
import random
import os
import gym
# init a task generator for data fetching
env = gym.make("CartPole-v0")
## Hyper Parameters
STATE_DIM = env.observation_space.shape[0]
ACTION_DIM = env.action_space.n
SAMPLE_NUMS = 100
FloatTensor = torch.FloatTensor
LongTensor = torch.LongTensor
ByteTensor = torch.ByteTensor
Tensor = FloatTensor
def init_weights(m):
if type(m) == nn.Linear:
nn.init.xavier_uniform_(m.weight)
m.bias.data.fill_(0.01)
class ActorNetwork(nn.Module):
def __init__(self,state_dim,action_dim,hidden_size):
super(ActorNetwork, self).__init__()
self.fc1 = nn.Linear(state_dim,hidden_size)
self.fc2 = nn.Linear(hidden_size,hidden_size)
self.fc3 = nn.Linear(hidden_size,action_dim)
self.apply(init_weights)
def forward(self,x):
out = F.relu(self.fc1(x))
out = F.relu(self.fc2(out))
out = F.log_softmax(self.fc3(out), dim=1)
dist = Categorical(out)
return dist
# init actor network
actor_network = ActorNetwork(STATE_DIM,ACTION_DIM,64)
actor_network_optim = torch.optim.Adam(actor_network.parameters(),lr = 0.001)
eps = np.finfo(np.float32).eps.item()
def test_env(vis=False):
state = env.reset()
if vis: env.render()
done = False
total_reward = 0
while not done:
dist = actor_network(FloatTensor([state]))
action = dist.sample()
next_state, reward, done, _ = env.step(action.cpu().numpy()[0])
state = next_state
if vis: env.render()
total_reward += reward
return total_reward
def roll_out(sample_nums):
state = env.reset()
states = []
actions = []
rewards = []
for step in range(sample_nums):
states.append(state)
dist = actor_network(Variable(torch.Tensor([state])))
action = dist.sample()
actions.append(action)
action = action.cpu().numpy()
next_state,reward,done,_ = env.step(action[0])
rewards.append(reward)
state = next_state
if done:
break
return states,actions,rewards,step
def update_network(states, actions, rewards):
actions_var = torch.cat(actions)
states_var = Variable(FloatTensor(states).view(-1,STATE_DIM))
# train actor network
actor_network_optim.zero_grad()
dist = actor_network(states_var)
log_probs = dist.log_prob(actions_var)
# calculate qs
rewards = Variable(torch.Tensor(discount_reward(rewards,0.99)))
rewards = (rewards - rewards.mean()) / (rewards.std() + eps)
actor_network_loss = - torch.mean(torch.sum(log_probs * rewards))
actor_network_loss.backward()
actor_network_optim.step()
def discount_reward(r, gamma):
discounted_r = np.zeros_like(r)
running_add = 0
for t in reversed(range(0, len(r))):
running_add = running_add * gamma + r[t]
discounted_r[t] = running_add
return discounted_r
def main():
running_reward = 10
i_episode = 0
MAX_EPISODES = 3000
early_stop = False
test_rewards = []
threshold_reward = env.spec.reward_threshold
while i_episode < MAX_EPISODES and not early_stop:
states,actions,rewards,steps = roll_out(SAMPLE_NUMS)
running_reward = running_reward * 0.99 + steps * 0.01
update_network(states,actions,rewards)
if i_episode % 50 == 0:
test_reward = np.mean([test_env() for _ in range(10)])
test_rewards.append(test_reward)
print ('EPISODE :- ', i_episode)
print("TEST REWARD :- ", test_reward)
if test_reward > threshold_reward: early_stop = True
i_episode += 1
test_env(True)
env.close()
if __name__ == '__main__':
main()