-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathprocedure.py
152 lines (119 loc) · 5.32 KB
/
procedure.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import numpy as np
import pandas as pd
import multiprocessing
import torch
import world
import utils
def BPR_train_original(dataset, recommend_model, loss_class, total_epochs, epoch, gum_temp, hard, w=None):
Recmodel = recommend_model
Recmodel.train()
bpr: utils.BPRLoss = loss_class
with utils.timer(name="Sample"):
S = utils.UniformSample_original(dataset)
users = torch.Tensor(S[:, 0]).long()
posItems = torch.Tensor(S[:, 1]).long()
negItems = torch.Tensor(S[:, 2]).long()
users = users.to(world.device)
posItems = posItems.to(world.device)
negItems = negItems.to(world.device)
users, posItems, negItems = utils.shuffle(users, posItems, negItems)
total_batch = len(users) // world.bpr_batch_size + 1
aver_loss = 0.
for (batch_i,
(batch_users,
batch_pos,
batch_neg)) in enumerate(utils.minibatch(users,
posItems,
negItems,
batch_size=world.bpr_batch_size)):
cri = bpr.stageOne(epoch, batch_users, batch_pos, batch_neg, gum_temp, hard)
aver_loss += cri
if world.tensorboard:
w.add_scalar(f'BPRLoss/BPR', cri, total_epochs * int(len(users) / world.bpr_batch_size) + batch_i)
aver_loss = aver_loss / total_batch
return f"loss{aver_loss:.3f}"
def test_one_batch(X):
sorted_items = X[0].numpy()
groundTrue = X[1]
r = utils.getLabel(groundTrue, sorted_items)
pre, recall, ndcg = [], [], []
for k in world.topks:
ret = utils.RecallPrecision_ATk(groundTrue, r, k)
pre.append(ret['precision'])
recall.append(ret['recall'])
ndcg.append(utils.NDCGatK_r(groundTrue,r,k))
return {'recall':np.array(recall),
'precision':np.array(pre),
'ndcg':np.array(ndcg)}
def Test(dataset, model, epoch, gum_temp, hard, mode, w=None, multicore=0):
u_batch_size = world.test_u_batch_size
dataset: utils.BasicDataset
# Mode
if mode == 'valid':
print('valid mode')
testDict: dict = dataset.validDict
elif mode == 'test':
print('test mode')
testDict: dict = dataset.testDict
model = model.eval()
max_K = max(world.topks)
if multicore == 1:
pool = multiprocessing.Pool(world.CORES)
# Results
results = {'precision': np.zeros(len(world.topks)),
'recall': np.zeros(len(world.topks)),
'ndcg': np.zeros(len(world.topks))}
with torch.no_grad():
users = list(testDict.keys())
try:
assert u_batch_size <= len(users) / 10
except AssertionError:
print(f"test_u_batch_size is too big for this dataset, try a small one {len(users) // 10}")
users_list = []
rating_list = []
groundTrue_list = []
total_batch = len(users) // u_batch_size + 1
for batch_users in utils.minibatch(users, batch_size=u_batch_size):
allPos = dataset.getUserPosItems(batch_users)
groundTrue = [testDict[u] for u in batch_users]
batch_users_gpu = torch.Tensor(batch_users).long()
batch_users_gpu = batch_users_gpu.to(world.device)
rating = model.getUsersRating(batch_users_gpu, gum_temp, 1, hard)
exclude_index = []
exclude_items = []
for range_i, items in enumerate(allPos):
exclude_index.extend([range_i] * len(items))
exclude_items.extend(items)
rating[exclude_index, exclude_items] = -(1<<10)
_, rating_K = torch.topk(rating, k=max_K)
rating = rating.cpu().numpy()
del rating
users_list.append(batch_users)
rating_list.append(rating_K.cpu())
groundTrue_list.append(groundTrue)
assert total_batch == len(users_list)
X = zip(rating_list, groundTrue_list)
if multicore == 1:
pre_results = pool.map(test_one_batch, X)
else:
pre_results = []
for x in X:
pre_results.append(test_one_batch(x))
scale = float(u_batch_size/len(users))
for result in pre_results:
results['recall'] += result['recall']
results['precision'] += result['precision']
results['ndcg'] += result['ndcg']
results['recall'] /= float(len(users))
results['precision'] /= float(len(users))
results['ndcg'] /= float(len(users))
if world.tensorboard:
w.add_scalars(f'Test/Recall@{world.topks}',
{str(world.topks[i]): results['recall'][i] for i in range(len(world.topks))}, epoch)
w.add_scalars(f'Test/Precision@{world.topks}',
{str(world.topks[i]): results['precision'][i] for i in range(len(world.topks))}, epoch)
w.add_scalars(f'Test/NDCG@{world.topks}',
{str(world.topks[i]): results['ndcg'][i] for i in range(len(world.topks))}, epoch)
if multicore == 1:
pool.close()
return results