-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
151 lines (114 loc) · 4.62 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
from typing import Any
import numpy as np
import optuna
import torch
import matplotlib.pyplot as plt
from optuna import TrialPruned
from optuna.pruners import MedianPruner
from torch.utils.data import DataLoader
import torch.nn as nn
class Model(nn.Module):
def __init__(self):
super().__init__()
self.stack = nn.Sequential(
nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(32),
nn.LeakyReLU(0.01),
nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(64),
nn.LeakyReLU(0.01),
nn.MaxPool2d(2, 2),
nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(128),
nn.LeakyReLU(0.01),
nn.MaxPool2d(2, 2),
nn.Flatten(),
nn.Linear(128 * 7 * 7, 256),
nn.Dropout(0.3),
nn.LeakyReLU(0.01),
nn.Linear(256, 256),
nn.Dropout(0.3),
nn.LeakyReLU(0.01),
nn.Linear(256, 10)
)
def forward(self, x):
x = x.view(x.size(0), 1, 28, 28)
return self.stack(x)
def fit(self, data_loader, optimizer, scheduler, loss_function, epochs, device, trial=None, loss_map=None, verbose=0):
if verbose > 0:
print("Training model...")
self.train()
loss_averages = []
for epoch in range(epochs):
losses = []
if verbose:
print(f"Epoch {epoch+1}/{epochs}")
for i, (x, y) in enumerate(data_loader):
x = x.to(device)
y = y.to(device)
optimizer.zero_grad()
prediction = self(x)
loss = loss_function(prediction, y)
loss.backward()
optimizer.step()
losses.append(loss.item())
if verbose > 0:
print(f'\r{(i+1) / len(data_loader) * 100:.2f}%', end='', flush=True)
loss_averages.append(np.array(losses).mean())
scheduler.step(loss_averages[-1])
if verbose > 0:
print()
if trial is not None:
trial.report(loss_averages[-1], epoch)
if trial.should_prune():
if verbose > 0:
print(f"Trial {trial.number+1} was pruned!")
loss_map.append(loss_averages + [np.nan] * (epochs - len(loss_averages)))
raise TrialPruned()
if verbose > 1:
plt.plot(loss_averages)
plt.title("Training loss")
plt.xlabel("Epoch")
plt.ylabel("Loss")
if verbose > 0:
print(f"\nDone, the final loss is {loss_averages[-1]}")
if loss_map is not None:
loss_map.append(loss_averages)
def evaluate(self, test_data, device) -> float:
print("Evaluating model...")
self.eval()
correct = 0
for i, (x, y) in enumerate(test_data):
x = x.to(device)
prediction = self(x).argmax(dim=-1).item()
if prediction == y:
correct += 1
print(f'\r{(i + 1) / len(test_data) * 100:.2f}%', end='', flush=True)
evaluation = correct / len(test_data)
print(f"\nDone, the model has an accuracy of {evaluation * 100}%")
return evaluation
def tune_hyperparameters(device, training_data, trials, trial_epochs, loss_map) -> (dict[str, Any]):
study = optuna.create_study(direction='minimize', pruner=MedianPruner(n_warmup_steps=0, n_startup_trials=1))
study.optimize(lambda trial: objective(trial, device, training_data, trials, trial_epochs, loss_map), n_trials=trials)
return study.best_params
def objective(trial, device, training_data, trials, trial_epochs, loss_map) -> float:
learn_rate = trial.suggest_float("learn_rate", 1e-5, 1e-1, log=True)
batch_size = trial.suggest_categorical("batch_size", [24, 32, 48])
model = Model().to(device)
optimizer = torch.optim.Adam(model.parameters(), learn_rate)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', patience=3, factor=0.1)
print(f"Trial {trial.number+1}/{trials}")
model.fit(
data_loader=DataLoader(training_data, batch_size, True),
optimizer=optimizer,
scheduler=scheduler,
loss_function=nn.CrossEntropyLoss(),
epochs=trial_epochs,
trial=trial,
verbose=1,
loss_map=loss_map,
device=device
)
losses = loss_map[-1]
print(f"Done, arguments {trial.params} resulted in a loss of {losses[-1]}")
return losses[-1]