-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrat_finder.py
1169 lines (962 loc) · 51.6 KB
/
rat_finder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python3
"""
RAT Finder - Beta steganography detection tool for 2PAC
This tool is designed to detect potential steganography in images.
It's part of the 2PAC toolkit but focused on security aspects.
Author: Richard Young
License: MIT
"""
import os
import sys
import argparse
import concurrent.futures
import logging
import numpy as np
from pathlib import Path
from PIL import Image
import matplotlib.pyplot as plt
from scipy import stats
import colorama
from tqdm import tqdm
# Initialize colorama
colorama.init()
# Version
VERSION = "0.2.0"
# Set up logging
def setup_logging(verbose, no_color=False):
level = logging.DEBUG if verbose else logging.INFO
# Define color codes
if not no_color:
# Color scheme
COLORS = {
'DEBUG': colorama.Fore.CYAN,
'INFO': colorama.Fore.GREEN,
'WARNING': colorama.Fore.YELLOW,
'ERROR': colorama.Fore.RED,
'CRITICAL': colorama.Fore.MAGENTA + colorama.Style.BRIGHT,
'RESET': colorama.Style.RESET_ALL
}
# Custom formatter with colors
class ColoredFormatter(logging.Formatter):
def format(self, record):
levelname = record.levelname
if levelname in COLORS:
record.levelname = f"{COLORS[levelname]}{levelname}{COLORS['RESET']}"
record.msg = f"{COLORS[levelname]}{record.msg}{COLORS['RESET']}"
return super().format(record)
formatter = ColoredFormatter('%(asctime)s - %(levelname)s - %(message)s')
else:
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
handler = logging.StreamHandler()
handler.setFormatter(formatter)
logging.basicConfig(
level=level,
handlers=[handler]
)
def print_banner():
"""Print RAT Finder themed ASCII art banner"""
banner = r"""
██████╗ █████╗ ████████╗ ███████╗██╗███╗ ██╗██████╗ ███████╗██████╗
██╔══██╗██╔══██╗╚══██╔══╝ ██╔════╝██║████╗ ██║██╔══██╗██╔════╝██╔══██╗
██████╔╝███████║ ██║█████╗█████╗ ██║██╔██╗ ██║██║ ██║█████╗ ██████╔╝
██╔══██╗██╔══██║ ██║╚════╝██╔══╝ ██║██║╚██╗██║██║ ██║██╔══╝ ██╔══██╗
██║ ██║██║ ██║ ██║ ██║ ██║██║ ╚████║██████╔╝███████╗██║ ██║
╚═╝ ╚═╝╚═╝ ╚═╝ ╚═╝ ╚═╝ ╚═╝╚═╝ ╚═══╝╚═════╝ ╚══════╝╚═╝ ╚═╝
╔═══════════════════════════════════════════════════════════════════════╗
║ Steganography Detection Tool (v0.2.0) - Part of the 2PAC toolkit ║
║ "What the eyes see and the ears hear, the mind believes" ║
╚═══════════════════════════════════════════════════════════════════════╝
"""
if 'colorama' in sys.modules:
banner_lines = banner.strip().split('\n')
colored_banner = []
# Color the RAT part in red, the FINDER part in blue
for i, line in enumerate(banner_lines):
if i < 6: # The logo lines
# Add the RAT part in red
part1 = line[:24]
# Add the FINDER part in blue
part2 = line[24:]
colored_line = f"{colorama.Fore.RED}{part1}{colorama.Fore.BLUE}{part2}{colorama.Style.RESET_ALL}"
colored_banner.append(colored_line)
elif i >= 6 and i <= 9: # The box with text
colored_banner.append(f"{colorama.Fore.YELLOW}{line}{colorama.Style.RESET_ALL}")
else:
colored_banner.append(f"{colorama.Fore.WHITE}{line}{colorama.Style.RESET_ALL}")
print('\n'.join(colored_banner))
else:
print(banner)
print()
#------------------------------------------------------------------------------
# STEGANOGRAPHY DETECTION TECHNIQUES
#------------------------------------------------------------------------------
def perform_ela_analysis(image_path, quality=75):
"""
Performs Error Level Analysis (ELA) to detect manipulated areas in an image.
ELA works by intentionally resaving an image at a known quality level and
analyzing the differences between the original and resaved versions.
Areas that have been manipulated often show up as having different error levels.
Args:
image_path: Path to the image
quality: JPEG quality level to use for recompression (default: 75)
Returns:
(is_suspicious, confidence, details)
"""
try:
# Only perform ELA on JPEG images
if not image_path.lower().endswith(('.jpg', '.jpeg', '.jfif')):
return False, 0, {"error": "ELA is only effective for JPEG images"}
with Image.open(image_path) as original_img:
# Convert to RGB if needed
if original_img.mode != 'RGB':
original_img = original_img.convert('RGB')
# Create a temporary file for the resaved image
temp_file = tempfile.NamedTemporaryFile(suffix='.jpg', delete=True)
resaved_path = temp_file.name
# Save the image with the specified quality
original_img.save(resaved_path, quality=quality)
# Read the resaved image
with Image.open(resaved_path) as resaved_img:
# Convert both to numpy arrays
original_array = np.array(original_img).astype('int32')
resaved_array = np.array(resaved_img).astype('int32')
# Calculate absolute difference
diff = np.abs(original_array - resaved_array)
# Calculate statistics from the difference
mean_diff = np.mean(diff)
std_diff = np.std(diff)
max_diff = np.max(diff)
# Scale the differences to make them more visible (for visualization)
diff_scaled = diff * 10
# Look for suspicious patterns
# 1. High variance in error levels can indicate manipulation
# 2. Localized areas with significantly different error levels are suspicious
# 3. Unnaturally low error in complex areas can indicate steganography
# Calculate local variation using sliding window approach
# We're looking for areas where the difference between neighboring pixels
# has unusually high or low variance
# Use a simple method - check variance in blocks
block_size = 8 # 8x8 blocks, common in JPEG
shape = diff.shape
block_variance = []
# Sample blocks throughout the image
for i in range(0, shape[0] - block_size, block_size):
for j in range(0, shape[1] - block_size, block_size):
# Extract block for each channel
for c in range(3): # RGB channels
block = diff[i:i+block_size, j:j+block_size, c]
block_var = np.var(block)
if block_var > 0: # Avoid divisions by zero
block_variance.append(block_var)
if not block_variance:
return False, 0, {"error": "Could not calculate block variance"}
# Calculate statistics on block variances
mean_block_var = np.mean(block_variance)
max_block_var = np.max(block_variance)
std_block_var = np.std(block_variance)
# What we're looking for:
# 1. Unusually high block variance in some areas (significantly above the mean)
# 2. Unusually consistent error levels (too perfect - could indicate manipulation)
# Determine suspiciousness based on these factors
# Calculate a normalized ratio of max variance to mean variance
if mean_block_var > 0:
var_ratio = max_block_var / mean_block_var
else:
var_ratio = 0
# Calculate coefficient of variation for block variances
if mean_block_var > 0:
coeff_var = std_block_var / mean_block_var
else:
coeff_var = 0
# Heuristics based on ELA characteristics
# Unusually high variation ratio can indicate manipulation
is_suspicious_var_ratio = var_ratio > 50
# High coefficient of variation indicates inconsistent error levels
is_suspicious_coeff_var = coeff_var > 2.0
# Unusually high mean difference can indicate manipulation
is_suspicious_mean_diff = mean_diff > 15
# Combine factors
is_suspicious = (is_suspicious_var_ratio or
is_suspicious_coeff_var or
is_suspicious_mean_diff)
# Calculate confidence based on these factors
confidence = 0
if is_suspicious_var_ratio:
# Scale based on how extreme the ratio is
confidence += min(40, var_ratio / 2)
if is_suspicious_coeff_var:
# Scale based on coefficient of variation
confidence += min(30, coeff_var * 10)
if is_suspicious_mean_diff:
# Scale based on mean difference
confidence += min(30, mean_diff)
# Cap confidence at 90%
confidence = min(confidence, 90)
# Save results for return
details = {
"mean_diff": float(mean_diff),
"max_diff": float(max_diff),
"var_ratio": float(var_ratio),
"coeff_var": float(coeff_var),
"diff_image": diff_scaled.astype(np.uint8), # For visualization
"quality_used": quality
}
return is_suspicious, confidence, details
except Exception as e:
logging.debug(f"Error performing ELA on {image_path}: {str(e)}")
return False, 0, {"error": str(e)}
def check_lsb_anomalies(image_path, threshold=0.03):
"""
Detect potential LSB steganography by analyzing bit plane patterns.
Args:
image_path: Path to the image
threshold: Threshold for statistical anomaly detection
Returns:
(is_suspicious, confidence, details)
"""
try:
with Image.open(image_path) as img:
# Convert to RGB
if img.mode != 'RGB':
img = img.convert('RGB')
# Get image data as numpy array
img_array = np.array(img)
# Extract least significant bits from each channel
red_lsb = img_array[:,:,0] % 2
green_lsb = img_array[:,:,1] % 2
blue_lsb = img_array[:,:,2] % 2
# Calculate statistics
# Chi-square test to detect non-random patterns in LSB
red_chi = stats.chisquare(np.bincount(red_lsb.flatten()))[1]
green_chi = stats.chisquare(np.bincount(green_lsb.flatten()))[1]
blue_chi = stats.chisquare(np.bincount(blue_lsb.flatten()))[1]
# Calculate entropy of the LSB plane
red_entropy = stats.entropy(np.bincount(red_lsb.flatten()))
green_entropy = stats.entropy(np.bincount(green_lsb.flatten()))
blue_entropy = stats.entropy(np.bincount(blue_lsb.flatten()))
# Suspicious if chi-square test shows non-random distribution
# or if entropy is too high (close to 1 for random, lower for non-random)
chi_suspicious = min(red_chi, green_chi, blue_chi) < threshold
entropy_suspicious = abs(np.mean([red_entropy, green_entropy, blue_entropy]) - 1.0) > 0.1
# Calculate a confidence score (0-100%)
confidence = 0
if chi_suspicious:
confidence += 50
if entropy_suspicious:
confidence += 30
# Additional checks for common LSB steganography patterns
# Check for abnormal color distributions
color_distribution = np.std([np.std(red_lsb), np.std(green_lsb), np.std(blue_lsb)])
if color_distribution < 0.1: # Suspicious if too uniform
confidence += 20
is_suspicious = confidence > 50
details = {
"chi_square_values": [red_chi, green_chi, blue_chi],
"entropy_values": [red_entropy, green_entropy, blue_entropy],
"color_distribution": color_distribution
}
return is_suspicious, confidence, details
except Exception as e:
logging.debug(f"Error analyzing LSB in {image_path}: {str(e)}")
return False, 0, {"error": str(e)}
def check_file_size_anomalies(image_path):
"""
Check if file size is suspicious compared to image dimensions.
Args:
image_path: Path to the image
Returns:
(is_suspicious, confidence, details)
"""
try:
# Get file size
file_size = os.path.getsize(image_path)
with Image.open(image_path) as img:
width, height = img.size
pixel_count = width * height
# Calculate expected file size range based on image type
expected_size = 0
if image_path.lower().endswith('.png'):
# PNG files have variable compression but generally follow a pattern
# This is a very rough estimate
expected_min = pixel_count * 0.1 # Minimum expected size
expected_max = pixel_count * 3 # Maximum expected size
elif image_path.lower().endswith(('.jpg', '.jpeg')):
# JPEG files are typically smaller due to compression
expected_min = pixel_count * 0.05 # Minimum for very compressed JPEG
expected_max = pixel_count * 1.5 # Maximum for high quality JPEG
else:
# For other formats, use a more generic range
expected_min = pixel_count * 0.1
expected_max = pixel_count * 4
# Check if file size is within expected range
is_too_small = file_size < expected_min
is_too_large = file_size > expected_max
is_suspicious = is_too_small or is_too_large
# Calculate confidence
confidence = 0
if is_too_large:
# More likely to contain hidden data if too large
ratio = file_size / expected_max
confidence = min(int((ratio - 1) * 100), 90) # Cap at 90%
elif is_too_small:
# Less likely but still suspicious if too small
ratio = expected_min / file_size
confidence = min(int((ratio - 1) * 50), 70) # Cap at 70%
details = {
"file_size": file_size,
"expected_min": expected_min,
"expected_max": expected_max,
"pixel_count": pixel_count,
"width": width,
"height": height
}
return is_suspicious, confidence, details
except Exception as e:
logging.debug(f"Error analyzing file size in {image_path}: {str(e)}")
return False, 0, {"error": str(e)}
def check_histogram_anomalies(image_path):
"""
Analyze image histogram for unusual patterns that might indicate steganography.
Args:
image_path: Path to the image
Returns:
(is_suspicious, confidence, details)
"""
try:
with Image.open(image_path) as img:
# Convert to RGB
if img.mode != 'RGB':
img = img.convert('RGB')
# Get image data as numpy array
img_array = np.array(img)
# Calculate histograms for each color channel
hist_r = np.histogram(img_array[:,:,0], bins=256, range=(0, 256))[0]
hist_g = np.histogram(img_array[:,:,1], bins=256, range=(0, 256))[0]
hist_b = np.histogram(img_array[:,:,2], bins=256, range=(0, 256))[0]
# Normalize histograms
pixel_count = img_array.shape[0] * img_array.shape[1]
hist_r = hist_r / pixel_count
hist_g = hist_g / pixel_count
hist_b = hist_b / pixel_count
# Analyze histogram characteristics
# 1. Check for comb patterns (alternating peaks/valleys) which can indicate LSB steganography
comb_pattern_r = np.sum(np.abs(np.diff(np.diff(hist_r))))
comb_pattern_g = np.sum(np.abs(np.diff(np.diff(hist_g))))
comb_pattern_b = np.sum(np.abs(np.diff(np.diff(hist_b))))
# 2. Check for unusual peaks at specific values
# LSB steganography often causes unusual spikes at even or odd values
even_odd_ratio_r = np.sum(hist_r[::2]) / np.sum(hist_r[1::2]) if np.sum(hist_r[1::2]) > 0 else 1
even_odd_ratio_g = np.sum(hist_g[::2]) / np.sum(hist_g[1::2]) if np.sum(hist_g[1::2]) > 0 else 1
even_odd_ratio_b = np.sum(hist_b[::2]) / np.sum(hist_b[1::2]) if np.sum(hist_b[1::2]) > 0 else 1
# Calculate an evenness score - how far from 1.0 (perfect balance) are we?
even_odd_deviation = max(
abs(even_odd_ratio_r - 1.0),
abs(even_odd_ratio_g - 1.0),
abs(even_odd_ratio_b - 1.0)
)
# 3. Calculate histogram smoothness (natural images tend to have smoother histograms)
smoothness_r = np.mean(np.abs(np.diff(hist_r)))
smoothness_g = np.mean(np.abs(np.diff(hist_g)))
smoothness_b = np.mean(np.abs(np.diff(hist_b)))
# Suspicious if large even/odd ratio deviation or high comb pattern values
is_suspicious_comb = max(comb_pattern_r, comb_pattern_g, comb_pattern_b) > 0.015
is_suspicious_even_odd = even_odd_deviation > 0.1
is_suspicious_smoothness = max(smoothness_r, smoothness_g, smoothness_b) > 0.01
is_suspicious = is_suspicious_comb or is_suspicious_even_odd or is_suspicious_smoothness
# Calculate confidence
confidence = 0
if is_suspicious_comb:
confidence += 30
if is_suspicious_even_odd:
confidence += 40
if is_suspicious_smoothness:
confidence += 20
# Cap confidence at 90%
confidence = min(confidence, 90)
details = {
"comb_pattern_values": [comb_pattern_r, comb_pattern_g, comb_pattern_b],
"even_odd_ratios": [even_odd_ratio_r, even_odd_ratio_g, even_odd_ratio_b],
"smoothness_values": [smoothness_r, smoothness_g, smoothness_b],
"even_odd_deviation": even_odd_deviation
}
return is_suspicious, confidence, details
except Exception as e:
logging.debug(f"Error analyzing histogram in {image_path}: {str(e)}")
return False, 0, {"error": str(e)}
def check_metadata_anomalies(image_path):
"""
Look for unusual metadata or metadata inconsistencies that could indicate steganography.
Args:
image_path: Path to the image
Returns:
(is_suspicious, confidence, details)
"""
try:
with Image.open(image_path) as img:
# Extract metadata (EXIF, etc)
metadata = {}
if hasattr(img, '_getexif') and img._getexif() is not None:
metadata = {k: v for k, v in img._getexif().items()}
# Check for known steganography software markers
steganography_markers = [
'outguess', 'stegano', 'steghide', 'jsteg', 'f5', 'secret',
'hidden', 'conceal', 'invisible', 'steganography'
]
found_markers = []
for key, value in metadata.items():
if isinstance(value, str):
value_lower = value.lower()
for marker in steganography_markers:
if marker in value_lower:
found_markers.append((key, marker, value))
# Check for unusual metadata structure
is_suspicious = len(found_markers) > 0
confidence = min(len(found_markers) * 30, 90) if is_suspicious else 0
# Check for metadata size anomalies
if len(metadata) > 30: # Unusually large metadata
is_suspicious = True
confidence = max(confidence, 50)
details = {
"metadata_count": len(metadata),
"suspicious_markers": found_markers
}
return is_suspicious, confidence, details
except Exception as e:
logging.debug(f"Error analyzing metadata in {image_path}: {str(e)}")
return False, 0, {"error": str(e)}
def check_visual_noise_anomalies(image_path):
"""
Analyze visual noise patterns to detect potential steganography.
Args:
image_path: Path to the image
Returns:
(is_suspicious, confidence, details)
"""
try:
with Image.open(image_path) as img:
# Convert to RGB
if img.mode != 'RGB':
img = img.convert('RGB')
# Resize if image is too large for faster processing
width, height = img.size
if width > 1000 or height > 1000:
ratio = min(1000 / width, 1000 / height)
new_width = int(width * ratio)
new_height = int(height * ratio)
img = img.resize((new_width, new_height))
# Get image data as numpy array
img_array = np.array(img)
# Apply noise detection
# Calculate noise in each channel by looking at differences between adjacent pixels
red_noise = np.mean(np.abs(np.diff(img_array[:,:,0], axis=0))) + np.mean(np.abs(np.diff(img_array[:,:,0], axis=1)))
green_noise = np.mean(np.abs(np.diff(img_array[:,:,1], axis=0))) + np.mean(np.abs(np.diff(img_array[:,:,1], axis=1)))
blue_noise = np.mean(np.abs(np.diff(img_array[:,:,2], axis=0))) + np.mean(np.abs(np.diff(img_array[:,:,2], axis=1)))
# Calculate noise ratio between channels
# In natural images, noise should be roughly similar across channels
# Large differences might indicate steganographic content
avg_noise = (red_noise + green_noise + blue_noise) / 3
noise_diffs = [abs(red_noise - avg_noise), abs(green_noise - avg_noise), abs(blue_noise - avg_noise)]
max_diff_ratio = max(noise_diffs) / avg_noise if avg_noise > 0 else 0
# Suspicious if significant differences between channels
is_suspicious = max_diff_ratio > 0.2
confidence = min(int(max_diff_ratio * 100), 90) if is_suspicious else 0
details = {
"red_noise": red_noise,
"green_noise": green_noise,
"blue_noise": blue_noise,
"max_diff_ratio": max_diff_ratio
}
return is_suspicious, confidence, details
except Exception as e:
logging.debug(f"Error analyzing visual noise in {image_path}: {str(e)}")
return False, 0, {"error": str(e)}
def analyze_image(image_path, sensitivity='medium'):
"""
Perform comprehensive steganography detection on an image.
Args:
image_path: Path to the image
sensitivity: 'low', 'medium', or 'high'
Returns:
(is_suspicious, overall_confidence, detection_details)
"""
# Set threshold based on sensitivity
thresholds = {
'low': 0.01, # More likely to find steganography but more false positives
'medium': 0.03, # Balanced detection
'high': 0.05 # Fewer false positives but might miss some steganography
}
confidence_required = {
'low': 60, # Lower bar for detection
'medium': 70, # Moderate confidence required
'high': 80 # High confidence required to report
}
threshold = thresholds.get(sensitivity, 0.03)
min_confidence = confidence_required.get(sensitivity, 70)
try:
results = {}
# Run all detection methods
lsb_result = check_lsb_anomalies(image_path, threshold)
results['lsb_analysis'] = {
'suspicious': lsb_result[0],
'confidence': lsb_result[1],
'details': lsb_result[2]
}
size_result = check_file_size_anomalies(image_path)
results['file_size_analysis'] = {
'suspicious': size_result[0],
'confidence': size_result[1],
'details': size_result[2]
}
metadata_result = check_metadata_anomalies(image_path)
results['metadata_analysis'] = {
'suspicious': metadata_result[0],
'confidence': metadata_result[1],
'details': metadata_result[2]
}
noise_result = check_visual_noise_anomalies(image_path)
results['visual_noise_analysis'] = {
'suspicious': noise_result[0],
'confidence': noise_result[1],
'details': noise_result[2]
}
# Add the new histogram analysis
histogram_result = check_histogram_anomalies(image_path)
results['histogram_analysis'] = {
'suspicious': histogram_result[0],
'confidence': histogram_result[1],
'details': histogram_result[2]
}
# Add Error Level Analysis (ELA) for JPEG images
if image_path.lower().endswith(('.jpg', '.jpeg', '.jfif')):
ela_result = perform_ela_analysis(image_path)
results['ela_analysis'] = {
'suspicious': ela_result[0],
'confidence': ela_result[1],
'details': ela_result[2]
}
# Calculate overall confidence
# Weight the different tests
weights = {
'lsb_analysis': 0.25, # LSB is a common technique
'histogram_analysis': 0.20, # Histogram patterns are strong indicators
'file_size_analysis': 0.10, # Size can be indicative
'metadata_analysis': 0.10, # Metadata less common but useful indicator
'visual_noise_analysis': 0.15, # Visual noise can be a good indicator
'ela_analysis': 0.20 # Error Level Analysis is effective for JPEG manipulation
}
# Only include weights for methods that were actually run
used_weights = {k: v for k, v in weights.items() if k in results}
# Normalize the weights to ensure they sum to 1.0
weight_sum = sum(used_weights.values())
if weight_sum > 0:
used_weights = {k: v/weight_sum for k, v in used_weights.items()}
# Calculate weighted confidence
overall_confidence = sum(
results[key]['confidence'] * used_weights[key] for key in used_weights
)
# Determine if image is suspicious overall
is_suspicious = overall_confidence >= min_confidence
return is_suspicious, overall_confidence, results
except Exception as e:
logging.debug(f"Error analyzing {image_path}: {str(e)}")
return False, 0, {"error": str(e)}
def process_file(args):
"""Process a single image file."""
image_path, sensitivity, output_dir = args
try:
is_suspicious, confidence, details = analyze_image(image_path, sensitivity)
result = {
'path': image_path,
'suspicious': is_suspicious,
'confidence': confidence,
'details': details
}
# Create visual report if output directory is specified
if output_dir and is_suspicious:
create_visual_report(image_path, confidence, details, output_dir)
return result
except Exception as e:
logging.debug(f"Error processing {image_path}: {str(e)}")
return {
'path': image_path,
'suspicious': False,
'confidence': 0,
'details': {'error': str(e)}
}
def create_visual_report(image_path, confidence, details, output_dir):
"""
Create a visual report showing the analysis of a suspicious image.
Args:
image_path: Path to the analyzed image
confidence: Detection confidence
details: Analysis details
output_dir: Directory to save report
"""
try:
# Create output directory if it doesn't exist
os.makedirs(output_dir, exist_ok=True)
# Create a figure with 3x3 subplots to accommodate ELA visualization
fig, axs = plt.subplots(3, 3, figsize=(15, 15))
fig.suptitle(f"Steganography Analysis: {os.path.basename(image_path)}\nConfidence: {confidence:.1f}%", fontsize=16)
# Original image
with Image.open(image_path) as img:
axs[0, 0].imshow(img)
axs[0, 0].set_title("Original Image")
axs[0, 0].axis('off')
# LSB visualization
img_array = np.array(img.convert('RGB'))
lsb_img = np.zeros_like(img_array)
# Amplify LSB data by 255 for visibility
lsb_img[:,:,0] = (img_array[:,:,0] % 2) * 255
lsb_img[:,:,1] = (img_array[:,:,1] % 2) * 255
lsb_img[:,:,2] = (img_array[:,:,2] % 2) * 255
axs[0, 1].imshow(lsb_img)
axs[0, 1].set_title("LSB Visualization")
axs[0, 1].axis('off')
# ELA visualization (NEW)
if 'ela_analysis' in details and 'details' in details['ela_analysis']:
ela_data = details['ela_analysis']['details']
if 'diff_image' in ela_data and not isinstance(ela_data.get('error', ''), str):
# Display the ELA image
axs[0, 2].imshow(ela_data['diff_image'])
axs[0, 2].set_title("Error Level Analysis (ELA)")
axs[0, 2].axis('off')
# Add annotation with key metrics
metrics = []
if 'var_ratio' in ela_data:
metrics.append(f"Variance ratio: {ela_data['var_ratio']:.2f}")
if 'coeff_var' in ela_data:
metrics.append(f"Coefficient of var: {ela_data['coeff_var']:.2f}")
if 'mean_diff' in ela_data:
metrics.append(f"Mean diff: {ela_data['mean_diff']:.2f}")
if metrics:
axs[0, 2].text(0.05, 0.05, "\n".join(metrics), transform=axs[0, 2].transAxes,
fontsize=9, verticalalignment='bottom',
bbox=dict(boxstyle='round,pad=0.5',
facecolor='white', alpha=0.7))
else:
axs[0, 2].text(0.5, 0.5, "ELA data not available",
horizontalalignment='center', verticalalignment='center')
axs[0, 2].axis('off')
else:
axs[0, 2].text(0.5, 0.5, "ELA analysis not available",
horizontalalignment='center', verticalalignment='center')
axs[0, 2].axis('off')
# Histogram visualization
if 'histogram_analysis' in details:
# Create histograms for each channel
hist_r = np.histogram(img_array[:,:,0], bins=256, range=(0, 256))[0]
hist_g = np.histogram(img_array[:,:,1], bins=256, range=(0, 256))[0]
hist_b = np.histogram(img_array[:,:,2], bins=256, range=(0, 256))[0]
# Plot the histograms
bin_edges = np.arange(0, 257)
axs[1, 0].plot(bin_edges[:-1], hist_r, color='red', alpha=0.7)
axs[1, 0].plot(bin_edges[:-1], hist_g, color='green', alpha=0.7)
axs[1, 0].plot(bin_edges[:-1], hist_b, color='blue', alpha=0.7)
axs[1, 0].set_title("Color Channel Histograms")
axs[1, 0].set_xlabel("Pixel Value")
axs[1, 0].set_ylabel("Frequency")
axs[1, 0].legend(['Red', 'Green', 'Blue'])
# Show odd/even distribution analysis
histogram_data = details['histogram_analysis']['details']
# Get even/odd ratio values
if 'even_odd_ratios' in histogram_data:
even_odd_ratios = histogram_data['even_odd_ratios']
# Plot as bar chart
axs[1, 1].bar(['Red', 'Green', 'Blue'], even_odd_ratios,
color=['red', 'green', 'blue'], alpha=0.7)
axs[1, 1].axhline(y=1.0, linestyle='--', color='gray')
axs[1, 1].set_title("Even/Odd Value Ratios")
axs[1, 1].set_ylabel("Ratio (1.0 = balanced)")
# Annotate with explanatory text
deviation = histogram_data.get('even_odd_deviation', 0)
assessment = "SUSPICIOUS" if deviation > 0.1 else "NORMAL"
axs[1, 1].annotate(f"Deviation: {deviation:.3f}\nAssessment: {assessment}",
xy=(0.05, 0.05), xycoords='axes fraction')
else:
axs[1, 1].text(0.5, 0.5, "Histogram ratio data not available",
horizontalalignment='center', verticalalignment='center')
axs[1, 1].axis('off')
else:
axs[1, 0].text(0.5, 0.5, "Histogram analysis not available",
horizontalalignment='center', verticalalignment='center')
axs[1, 0].axis('off')
axs[1, 1].axis('off')
# Noise visualization
if 'visual_noise_analysis' in details:
noise_data = details['visual_noise_analysis']['details']
noise_values = [noise_data.get('red_noise', 0),
noise_data.get('green_noise', 0),
noise_data.get('blue_noise', 0)]
axs[1, 2].bar(['Red', 'Green', 'Blue'], noise_values, color=['red', 'green', 'blue'])
axs[1, 2].set_title("Noise Levels by Channel")
axs[1, 2].set_ylabel("Noise Level")
else:
axs[1, 2].text(0.5, 0.5, "Noise analysis not available",
horizontalalignment='center', verticalalignment='center')
axs[1, 2].axis('off')
# File size analysis visualization
if 'file_size_analysis' in details and 'details' in details['file_size_analysis']:
size_data = details['file_size_analysis']['details']
if ('file_size' in size_data and 'expected_min' in size_data
and 'expected_max' in size_data and 'pixel_count' in size_data):
# Create a simple bar chart comparing actual vs expected size
sizes = [size_data['file_size'],
size_data['expected_min'],
size_data['expected_max']]
labels = ['Actual Size', 'Min Expected', 'Max Expected']
colors = ['blue', 'green', 'green']
axs[2, 0].bar(labels, sizes, color=colors, alpha=0.7)
axs[2, 0].set_title("File Size Analysis")
axs[2, 0].set_ylabel("Size (bytes)")
# Format y-axis to show human-readable sizes
axs[2, 0].get_yaxis().set_major_formatter(
plt.FuncFormatter(lambda x, loc: f"{x/1024:.1f}KB" if x >= 1024 else f"{x}B"))
# Is it suspiciously large?
is_too_large = size_data['file_size'] > size_data['expected_max']
is_too_small = size_data['file_size'] < size_data['expected_min']
if is_too_large:
assessment = f"SUSPICIOUS: {(size_data['file_size'] - size_data['expected_max'])/1024:.1f}KB larger than expected"
elif is_too_small:
assessment = f"SUSPICIOUS: {(size_data['expected_min'] - size_data['file_size'])/1024:.1f}KB smaller than expected"
else:
assessment = "NORMAL: Size within expected range"
axs[2, 0].annotate(assessment, xy=(0.05, 0.05), xycoords='axes fraction',
fontsize=9, verticalalignment='bottom')
else:
axs[2, 0].text(0.5, 0.5, "Size analysis data not available",
horizontalalignment='center', verticalalignment='center')
axs[2, 0].axis('off')
else:
axs[2, 0].text(0.5, 0.5, "Size analysis not available",
horizontalalignment='center', verticalalignment='center')
axs[2, 0].axis('off')
# Metadata analysis visualization
if 'metadata_analysis' in details and 'details' in details['metadata_analysis']:
metadata = details['metadata_analysis']['details']
metadata_text = f"Total metadata entries: {metadata.get('metadata_count', 0)}\n\n"
if 'suspicious_markers' in metadata and metadata['suspicious_markers']:
metadata_text += "Suspicious markers found:\n"
for key, marker, value in metadata['suspicious_markers'][:3]: # Show top 3
metadata_text += f"- '{marker}' in {key}\n"
if len(metadata['suspicious_markers']) > 3:
metadata_text += f"...and {len(metadata['suspicious_markers'])-3} more\n"
else:
metadata_text += "No suspicious metadata markers found"
axs[2, 1].text(0.1, 0.5, metadata_text, fontsize=10,
verticalalignment='center', horizontalalignment='left')
axs[2, 1].set_title("Metadata Analysis")
axs[2, 1].axis('off')
else:
axs[2, 1].text(0.5, 0.5, "Metadata analysis not available",
horizontalalignment='center', verticalalignment='center')
axs[2, 1].axis('off')
# Overall analysis metrics
axs[2, 2].axis('off')
metrics_text = "Detection Confidence by Method:\n\n"
for analysis_type, results in details.items():
if isinstance(results, dict) and 'confidence' in results:
confidence_value = results['confidence']
if confidence_value > 70:
highlight = " 🚨 HIGH"
elif confidence_value > 40:
highlight = " ⚠️ MEDIUM"
else:
highlight = ""
metrics_text += f"{analysis_type.replace('_', ' ').title()}: {confidence_value:.1f}%{highlight}\n"
axs[2, 2].text(0.1, 0.5, metrics_text, fontsize=10, verticalalignment='center')
axs[2, 2].set_title("Overall Analysis Results")
# Adjust layout
plt.tight_layout(rect=[0, 0, 1, 0.95])
# Save figure
report_filename = os.path.join(output_dir, f"steganalysis_{os.path.basename(image_path)}.png")
plt.savefig(report_filename)
plt.close()
logging.debug(f"Created visual report: {report_filename}")
return report_filename
except Exception as e:
logging.debug(f"Error creating visual report for {image_path}: {str(e)}")
return None
def find_image_files(directory, recursive=True):
"""Find all image files in a directory."""
image_extensions = ('.jpg', '.jpeg', '.png', '.bmp', '.gif', '.tiff', '.tif', '.webp')
image_files = []
if recursive:
for root, _, files in os.walk(directory):
for file in files:
if file.lower().endswith(image_extensions):
image_files.append(os.path.join(root, file))
else:
for file in os.listdir(directory):
if os.path.isfile(os.path.join(directory, file)) and file.lower().endswith(image_extensions):
image_files.append(os.path.join(directory, file))
return image_files
def analyze_images(directory, sensitivity='medium', recursive=True, output_dir=None, max_workers=None):
"""
Analyze all images in a directory for steganography.
Args:
directory: Directory to scan
sensitivity: 'low', 'medium', or 'high'
recursive: Whether to scan subdirectories
output_dir: Directory to save visual reports
max_workers: Number of worker processes
Returns:
List of suspicious image details
"""
# Find all image files
image_files = find_image_files(directory, recursive)
if not image_files:
logging.warning("No image files found!")
return []
logging.info(f"Found {len(image_files)} image files to analyze")
# Create output directory if specified
if output_dir:
os.makedirs(output_dir, exist_ok=True)
logging.info(f"Visual reports will be saved to: {output_dir}")
# Prepare input arguments for workers
input_args = [(file_path, sensitivity, output_dir) for file_path in image_files]
suspicious_images = []
# Process files in parallel
with concurrent.futures.ProcessPoolExecutor(max_workers=max_workers) as executor:
# Colorful progress bar
results = []
futures = {executor.submit(process_file, arg): arg[0] for arg in input_args}
with tqdm(
total=len(image_files),