-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimulation.R
147 lines (133 loc) · 4.71 KB
/
simulation.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# Set up environment -----------------------------------------------------------
## Libraries
"pbapply" %>=>% libInstall %!=>% library(.., char = T)
"ggplot2" %>=>% libInstall %!=>% library(.., char = T)
"grid" %>=>% libInstall %!=>% library(.., char = T)
"RColorBrewer" %>=>% libInstall %!=>% library(.., char = T)
## Color palette
cols = c(
"#834cde", "#65c33a", "#c047d8", "#4bc576", "#5765e1",
"#adb839", "#8f48a8", "#439436", "#cb7bde", "#7c8e31",
"#7369c3", "#d4a038", "#4977bb", "#dd4529", "#4dc6c6",
"#df4260", "#3b9b82", "#d3732f", "#57a6d3", "#a6513a",
"#7ebb82", "#ab4860", "#317649", "#b29cdc", "#5a7132",
"#856199", "#afae6b", "#e4858b", "#906c2d", "#d99970"
)
# Simulate the frequency oif the gene over generation --------------------------
## Simulation function
simulGeneFreq = function(
ne = 1000,
p0 = 1 / 2,
nrep = 30,
ngen = 15,
w = c(1, 1),
...
) {
e1 = new.env()
# y0 = ifelse(!is.null(list(...)$y0), list(...)$y0, 0)
out = data.frame(gen = 0, rep = seq_len(nrep), freq = p0)
lapply(seq_len(nrep), i ->> {
e1$p = p0
message(paste("Rep", i))
pblapply(seq_len(ngen), j ->> {
if (e1$p > 0 & e1$p < 1) {
c(
rep(1, w[1] * e1$p * ne * rlnorm(1, 0, 0.25)),
rep(0, w[2] * (1 - e1$p) * ne * rlnorm(1, 0, 0.25))
) %>=>%
set.seed(sample(1:100, 1)) %=>%
sample(.., min(length(..), ne)) %=>%
mean %->%
e1$p
}
data.frame(gen = j, rep = i, freq = e1$p)
}) %=>%
do.call(rbind, ..)
}) %=>%
do.call(rbind, c(list(out), ..))
}
## Plot the output
plotSimul = function(.data, gene = "gene", ...) {
.plot = ggplot(.data, aes(gen, freq, col = as.character(rep))) +
geom_line(alpha = 0.7, size = 0.8) +
scale_x_continuous(
"Number of Generations",
breaks = x ->> x[1]:x[2],
labels = ifelse(exists("y0"), x ->> x + y0, x ->> x),
expand = expansion(add = c(0, 0.2))
) +
scale_color_manual(
values = rainbow(length(unique(.data$rep))),
guide = F
) +
theme_classic() +
theme(
plot.background = element_blank(),
text = element_text(family = "Open Sans"),
plot.title = element_text(hjust = 0.5, size = 24),
axis.title = element_text(size = 18),
axis.text = element_text(size = 14),
plot.margin = unit(c(1, 2, 1, 1), "lines"),
plot.tag = element_text(size = 22)
)
plot(.plot)
}
# Log scale graph with smoothing
logPlot = function(.plot, gene = "gene", ...) {
.data = ggplot_build(.plot)$data[[1]]
.plot$layers[[1]] = NULL
.plot + labs(tag = "B") +
geom_line(
aes(x, log10(y) / 6 + 1, col = as.character(group)),
data = .data,
stat = "smooth", method = "glm",
method.args = list(family = "binomial"),
alpha = 0.7, size = 0.8, span = 0.1, se = F
) +
scale_y_continuous(
bquote("Frequency of"~italic(.(gene))),
limits = c(0, 1),
breaks = seq(0, 1, 1 / 6),
expand = expansion(add = c(0.005, 0.01)),
labels = c(parse(text = paste0(10, "^-", 6:1)), "1")
)
}
# Probability scale graph with smoothing
simPlot = function(.plot, gene = "gene", ...) {
.data = ggplot_build(.plot)$data[[1]]
.plot$layers[[1]] = NULL
.plot + labs(tag = "A") +
geom_line(
stat = "smooth", method = "glm",
method.args = list(family = "binomial"),
alpha = 0.7, size = 0.8, span = 0.1, se = F
) +
scale_y_continuous(
bquote("Frequency of"~italic(.(gene))),
limits = c(0, 1),
breaks = seq(0, 1, 0.25),
expand = expansion(add = c(0.005, 0.01))
)
}
## Cast data for saving
simData = function(.data, ...) {
arrange(.data, gen, rep) %=>%
split(.., as.factor(..$gen)) %=>>%
data.frame(..$gen[1], t(..$freq)) %=>%
do.call(rbind, ..) %=>%
setNames(.., c("gen", paste0("rep", unique(.data$rep))))
}
## Main wrapper function
simulField = function(ne = 1e6, p0 = .5, nrep = 1, ngen = 5, w = c(1, 1), ...) {
par(mfrow = c(1, 2))
simulGeneFreq(ne, p0, nrep, ngen, w, ...) %>=>% {
if ("exportData" %in% names(list(...))) print(simData(..))
} %=>%
plotSimul(.., ...) %=>%
list(simPlot(.., ...), logPlot(.., ...)) %=>%
gridExtra::grid.arrange(grobs = .., layout_matrix = rbind(c(1, 2))) %=>%
gTree(children = gList(.., grid.rect(
width = .99, height = .99,
gp = gpar(lwd = 2, col = "black", fill = NA)
)))
}