-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmodel.py
429 lines (346 loc) · 15.6 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
"""
Defines a probabilistic language auto-encoder that can be trained
with MIM or VAE learning.
"""
import torch
import torch.nn as nn
import torch.nn.utils.rnn as rnn_utils
from utils import to_var
import auxiliary as aux
class SentenceMIM(nn.Module):
"""
A probabilistic auto-encoder that can be trained with MIM learning
and VAE learning.
"""
def __init__(self, vocab_size, embedding_size, rnn_type, hidden_size, word_dropout,
embedding_dropout, latent_size,
sos_idx, eos_idx, pad_idx, unk_idx, max_sequence_length, num_layers=1,
min_logv=-10, prior_type="normal", marginal=False, sample_mode="greedy",
temperature=None, reverse_input=True):
super().__init__()
self.tensor = torch.cuda.FloatTensor if torch.cuda.is_available() else torch.Tensor
# store parameters
self.max_sequence_length = max_sequence_length
self.sos_idx = sos_idx
self.eos_idx = eos_idx
self.pad_idx = pad_idx
self.unk_idx = unk_idx
self.latent_size = latent_size
self.rnn_type = rnn_type
self.num_layers = num_layers
self.hidden_size = hidden_size
self.embedding = nn.Embedding(vocab_size, embedding_size)
self.word_dropout_rate = word_dropout
self.embedding_dropout = nn.Dropout(p=embedding_dropout)
self.min_logv = float(min_logv)
self.prior_type = prior_type
# If True, train as autoencoder
self.marginal = marginal
# greedy or sampling
self.sample_mode = sample_mode
# for sampling from prior
if temperature is None:
self.temperature = 1.0 / latent_size**0.5
else:
self.temperature = temperature
self.reverse_input = reverse_input
# construct model
rnn_kwargs = {}
if rnn_type == 'rnn':
rnn = nn.RNN
elif rnn_type == 'gru':
rnn = nn.GRU
elif rnn_type == 'lstm':
rnn = nn.LSTM
else:
raise ValueError("Unknown rnn_type = {rnn_type}".format(rnn_type=rnn_type))
self.encoder_rnn = rnn(embedding_size, hidden_size,
num_layers=num_layers,
batch_first=True, **rnn_kwargs)
self.decoder_rnn = rnn(embedding_size + latent_size, # + 1,
hidden_size,
num_layers=num_layers,
batch_first=True, **rnn_kwargs)
self.hidden_factor = num_layers
if rnn_type == 'lstm':
# predict hidden and cell
self.hidden_factor = self.hidden_factor * 2
self.hidden2mean = nn.Linear(hidden_size * self.hidden_factor, latent_size)
self.hidden2logv = nn.Linear(hidden_size * self.hidden_factor, latent_size)
self.latent2hidden = nn.Linear(latent_size, hidden_size * self.hidden_factor)
self.outputs2vocab = nn.Linear(hidden_size, vocab_size)
if prior_type == "normal":
self.prior = torch.distributions.Normal(
loc=to_var(torch.zeros(latent_size)),
scale=to_var(torch.ones(latent_size)),
)
else:
raise NotImplementedError("Unknown prior_type = {prior_type}".format(prior_type=self.prior_type))
def get_prior(self):
"""
Return model's prior
"""
return self.prior
def forward(self, input_sequence, length, z=None):
"""
Efficient forward pass.
"""
batch_size = input_sequence.size(0)
sorted_lengths, sorted_idx = torch.sort(length, descending=True)
input_sequence = input_sequence[sorted_idx]
# reverse input sequence to encoder
if self.reverse_input:
rev_input_sequence = aux.reverse_padded_sequence(
inputs=input_sequence,
lengths=sorted_lengths,
batch_first=True,
)
else:
rev_input_sequence = input_sequence
# ENCODER
input_embedding = self.embedding(rev_input_sequence)
torch.set_default_tensor_type('torch.FloatTensor')
packed_input = rnn_utils.pack_padded_sequence(
input_embedding, sorted_lengths.data.cpu(), batch_first=True)
if torch.cuda.is_available():
torch.set_default_tensor_type('torch.cuda.FloatTensor')
# encoder forward pass
if self.rnn_type == "lstm":
_, (hidden, cell) = self.encoder_rnn(packed_input)
hidden = hidden.transpose_(0, 1).contiguous().view((batch_size, -1))
cell = cell.transpose_(0, 1).contiguous().view((batch_size, -1))
hidden = torch.cat([hidden, cell], dim=-1)
else:
_, hidden = self.encoder_rnn(packed_input)
hidden = hidden.transpose_(0, 1).contiguous().view((batch_size, -1))
# REPARAMETERIZATION
mean = self.hidden2mean(hidden)
logv = self.hidden2logv(hidden).clamp(min=self.min_logv)
std = torch.exp(0.5 * logv)
if z is None:
if self.marginal:
z = mean
else:
z = to_var(torch.randn([batch_size, self.latent_size]))
z = z * std + mean
# DECODER
hidden = self.latent2hidden(z)
# decoder input
if self.word_dropout_rate > 0:
# randomly replace decoder input with <unk>
prob = torch.rand(input_sequence.size())
if torch.cuda.is_available():
prob = prob.cuda()
prob[(input_sequence.data - self.sos_idx) * (input_sequence.data - self.pad_idx) == 0] = 1
decoder_input_sequence = input_sequence.clone()
decoder_input_sequence[prob < self.word_dropout_rate] = self.unk_idx
input_embedding = self.embedding(decoder_input_sequence)
else:
input_embedding = self.embedding(input_sequence)
input_embedding = self.embedding_dropout(input_embedding)
# append z and token index
input_embedding = torch.cat([
input_embedding,
z.unsqueeze(1).expand(input_embedding.shape[0], input_embedding.shape[1], z.shape[1]),
],
dim=-1)
torch.set_default_tensor_type('torch.FloatTensor')
packed_input = rnn_utils.pack_padded_sequence(
input_embedding, sorted_lengths.data.cpu(), batch_first=True)
if torch.cuda.is_available():
torch.set_default_tensor_type('torch.cuda.FloatTensor')
# decoder forward pass
if self.rnn_type == "lstm":
hidden, cell = hidden.chunk(2, dim=-1)
hidden = hidden.view((batch_size, -1, self.hidden_size)).transpose_(0, 1).contiguous()
cell = cell.view((batch_size, -1, self.hidden_size)).transpose_(0, 1).contiguous()
outputs, _ = self.decoder_rnn(packed_input, (hidden, cell))
else:
hidden = hidden.view((batch_size, -1, self.hidden_size)).transpose_(0, 1).contiguous()
outputs, _ = self.decoder_rnn(packed_input, hidden)
# process outputs
padded_outputs = rnn_utils.pad_packed_sequence(outputs, batch_first=True,
padding_value=self.pad_idx)[0]
# total_length=total_length, padding_value=self.pad_idx)[0]
padded_outputs = padded_outputs.contiguous()
_, reversed_idx = torch.sort(sorted_idx)
padded_outputs = padded_outputs[reversed_idx]
b, s, _ = padded_outputs.size()
# project outputs to vocab
logp = nn.functional.log_softmax(self.outputs2vocab(padded_outputs.view(-1, padded_outputs.size(2))), dim=-1)
logp = logp.view(b, s, self.embedding.num_embeddings)
return logp, mean, logv, z
def encode(self, input_sequence, length, return_mean=False, return_std=False):
"""
Encodes sentences into corresponding latent codes z.
"""
batch_size = input_sequence.size(0)
sorted_lengths, sorted_idx = torch.sort(length, descending=True)
_, reversed_idx = torch.sort(sorted_idx)
input_sequence = input_sequence[sorted_idx]
# reverse input sequence to encoder
if self.reverse_input:
rev_input_sequence = aux.reverse_padded_sequence(
inputs=input_sequence,
lengths=sorted_lengths,
batch_first=True,
)
else:
rev_input_sequence = input_sequence
# ENCODER
input_embedding = self.embedding(rev_input_sequence)
torch.set_default_tensor_type('torch.FloatTensor')
packed_input = rnn_utils.pack_padded_sequence(
input_embedding, sorted_lengths.data.cpu(), batch_first=True)
if torch.cuda.is_available():
torch.set_default_tensor_type('torch.cuda.FloatTensor')
# encoder forward pass
if self.rnn_type == "lstm":
_, (hidden, cell) = self.encoder_rnn(packed_input)
hidden = hidden.transpose_(0, 1).contiguous().view((batch_size, -1))
cell = cell.transpose_(0, 1).contiguous().view((batch_size, -1))
hidden = torch.cat([hidden, cell], dim=-1)
else:
_, hidden = self.encoder_rnn(packed_input)
hidden = hidden.transpose_(0, 1).contiguous().view((batch_size, -1))
# REPARAMETERIZATION
mean = self.hidden2mean(hidden)
logv = self.hidden2logv(hidden).clamp(min=self.min_logv)
std = torch.exp(0.5 * logv)
if self.marginal:
z = mean
else:
z = to_var(torch.randn([batch_size, self.latent_size]))
z = z * std + mean
z = z[reversed_idx]
mean = mean[reversed_idx]
ret_val = [z]
if return_mean:
ret_val.append(mean)
if return_std:
ret_val.append(std)
if len(ret_val) == 1:
ret_val = ret_val[0]
return ret_val
def decode(self, n=4, z=None):
"""
Decodes latent codes z into corresponding sentences.
"""
samples, z = self.inference(n=n, z=z)
length = (samples != self.pad_idx).sum(-1)
return samples, z, length
def sample(self, n=4, z=None, mcmc=0):
"""
Sampling (with optional MCMC chains)
"""
samples, z, length = self.decode(n=n, z=z)
# run MCMC chain
for i in range(mcmc):
z = self.encode(samples, length)
samples, z, length = self.decode(n=n, z=z)
return samples, z, length
def inference(self, n=4, z=None):
"""
Autoregressive sampling from the model.
"""
temp = self.temperature
if z is None:
batch_size = n
if self.prior_type == "normal":
z = self.get_prior().sample_n(batch_size) * temp
else:
raise NotImplementedError("Unknown prior_type = {prior_type}".format(prior_type=self.prior_type))
else:
batch_size = z.size(0)
hidden = self.latent2hidden(z)
# required for dynamic stopping of sentence generation
sequence_idx = torch.arange(0, batch_size, out=self.tensor()).long() # all idx of batch
# all idx of batch which are still generating
sequence_running = torch.arange(0, batch_size, out=self.tensor()).long()
sequence_mask = torch.ones(batch_size, out=self.tensor()).byte()
# idx of still generating sequences with respect to current loop
running_seqs = torch.arange(0, batch_size, out=self.tensor()).long()
generations = self.tensor(batch_size, self.max_sequence_length).fill_(self.pad_idx).long()
# accumulate tokens
t = 0
while(t < self.max_sequence_length and len(running_seqs) > 0):
if t == 0:
input_sequence = to_var(torch.Tensor(batch_size).fill_(self.sos_idx).long())
input_sequence = input_sequence.unsqueeze(1)
input_embedding = self.embedding(input_sequence)
input_embedding = torch.cat([
input_embedding,
z.unsqueeze(1).expand(input_embedding.shape[0], input_embedding.shape[1], z.shape[1]),
],
dim=-1)
bs = len(running_seqs)
# decoder forward pass
if self.rnn_type == "lstm":
hidden, cell = hidden.chunk(2, dim=-1)
hidden = hidden.view((bs, -1, self.hidden_size)).transpose_(0, 1).contiguous()
cell = cell.view((bs, -1, self.hidden_size)).transpose_(0, 1).contiguous()
output, (hidden, cell) = self.decoder_rnn(input_embedding, (hidden, cell))
hidden = hidden.transpose_(0, 1).contiguous().view((bs, -1))
cell = cell.transpose_(0, 1).contiguous().view((bs, -1))
hidden = torch.cat([hidden, cell], dim=-1)
else:
hidden = hidden.view((bs, -1, self.hidden_size)).transpose_(0, 1).contiguous()
output, hidden = self.decoder_rnn(input_embedding, hidden)
hidden = hidden.transpose_(0, 1).contiguous().view((bs, -1))
logits = self.outputs2vocab(output)
input_sequence = self._sample(logits)
# save next input
generations = self._save_sample(generations, input_sequence, sequence_running, t)
# update gloabl running sequence
sequence_mask[sequence_running] = (input_sequence != self.eos_idx).data.type_as(
sequence_mask[sequence_running])
sequence_running = sequence_idx.masked_select(sequence_mask.type(torch.bool))
# update local running sequences
running_mask = (input_sequence != self.eos_idx).data
running_seqs = running_seqs.masked_select(running_mask.type(torch.bool))
# prune input and hidden state according to local update
if len(running_seqs) > 0:
if input_sequence.dim() < 1:
input_sequence = input_sequence.unsqueeze(0)
input_sequence = input_sequence[running_seqs]
# hidden = hidden[:, running_seqs]
hidden = hidden[running_seqs]
z = z[running_seqs]
running_seqs = torch.arange(0, len(running_seqs), out=self.tensor()).long()
t += 1
return generations, z
def _sample(self, dist, mode=None):
"""
Auxiliary sampling method.
"""
if mode is None:
mode = self.sample_mode
if mode == 'greedy':
_, sample = torch.topk(dist, 1, dim=-1)
elif mode == 'sample':
sample_prob = torch.nn.functional.softmax(dist, dim=-1).squeeze(1)
sample = torch.multinomial(sample_prob, num_samples=1)
elif mode == 'sample-no-unk':
# reduce chances for <unk>
dist[:, :, self.unk_idx] = dist.min()
sample_prob = torch.nn.functional.softmax(dist, dim=-1).squeeze(1)
sample = torch.multinomial(sample_prob, num_samples=1)
elif mode == 'greedy-no-unk':
# prevent <unk>
dist[:, :, self.unk_idx] = dist.min()
_, sample = torch.topk(dist, 1, dim=-1)
else:
raise ValueError("Unknown sampling mode = {mode}".format(mode=mode))
sample = sample.squeeze()
return sample
def _save_sample(self, save_to, sample, running_seqs, t):
"""
Auxiliary sampling method.
"""
# select only still running
running_latest = save_to[running_seqs]
# update token at position t
running_latest[:, t] = sample.data
# save back
save_to[running_seqs] = running_latest
return save_to