-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtest.py
executable file
·516 lines (416 loc) · 18.3 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
#!/usr/bin/env python
"""
Test a trained latent variable language model.
"""
import os
import json
import torch
from torch.utils.data import DataLoader
import argparse
import traceback
import numpy as np
from collections import defaultdict
import csv
from tqdm import tqdm
import matplotlib.pyplot as plt
import npeet.entropy_estimators as ee
from nltk.translate import bleu_score
from utils import to_var, idx2word, interpolate
import auxiliary as aux
def main(checkpoint_fname, args):
#=============================================================================#
# Load model
#=============================================================================#
if not os.path.exists(checkpoint_fname):
raise FileNotFoundError(checkpoint_fname)
model = torch.load(checkpoint_fname)
print("Model loaded from %s" % (checkpoint_fname))
if torch.cuda.is_available():
device = torch.device('cuda')
torch.set_default_tensor_type('torch.cuda.FloatTensor')
else:
device = torch.device('cpu')
model = model.to(device)
# update max_sequence length
if args.max_sequence_length > 0:
model.max_sequence_length = args.max_sequence_length
else:
# else use model training value
args.max_sequence_length = model.max_sequence_length
if args.sample_mode:
model.sample_mode = args.sample_mode
compute_temperature = False
if args.temperature > 0.0:
model.temperature = args.temperature
elif args.temperature == 0.0:
model.temperature = 1.0 / model.latent_size * 0.5
elif args.temperature < 0.0:
compute_temperature = True
model.eval()
base_fname = "{base_fname}-{split}-{seed}-marginal{marginal}-mcmc{mcmc}".format(
base_fname=os.path.splitext(checkpoint_fname)[0],
split=args.split,
seed=args.seed,
marginal=int(model.marginal),
mcmc=args.mcmc,
)
data_fname = base_fname + ".csv"
log_fname = base_fname + ".txt"
print("log_fname = {log_fname}".format(log_fname=log_fname))
#=============================================================================#
# Log results
#=============================================================================#
log_fh = open(log_fname, "w")
def print_log(*args, **kwargs):
"""
Print to screen and log file.
"""
print(*args, **kwargs, file=log_fh)
return print(*args, **kwargs)
#=============================================================================#
# Load data
#=============================================================================#
print_log('----------INFO----------\n')
print_log("checkpoint_fname = {checkpoint_fname}".format(checkpoint_fname=checkpoint_fname))
print_log("\nargs = {args}\n".format(args=args))
print_log("\nmodel.args = {args}\n".format(args=model.args))
params_num = len(torch.nn.utils.parameters_to_vector(model.parameters()))
print_log("\n parameters number = {params_num_h} [{params_num}]".format(
params_num_h=aux.millify(params_num),
params_num=params_num,
))
dataset_name = model.args.dataset.lower()
split = args.split
dataset = aux.load_dataset(
dataset_name=dataset_name,
split=split,
args=args,
enforce_sos=False,
)
vocab = aux.load_vocab(
dataset_name=dataset_name,
args=args,
)
w2i, i2w = vocab['w2i'], vocab['i2w']
if (args.batch_size <= 0):
args.batch_size = args.num_samples
args.batch_size = min(len(dataset), args.batch_size)
args.num_samples = min(len(dataset), args.num_samples)
# collect all stats
stats = {}
#=============================================================================#
# Evaluate model
#=============================================================================#
if args.test:
print("Testing model")
print("data_fname = {data_fname}".format(data_fname=data_fname))
print_log('----------EVALUATION----------\n')
tensor = torch.cuda.FloatTensor if torch.cuda.is_available() else torch.Tensor
data_loader = DataLoader(
dataset=dataset,
batch_size=args.batch_size,
shuffle=True,
drop_last=True,
)
# entropy
nll = torch.nn.NLLLoss(reduction="none", ignore_index=dataset.pad_idx)
def loss_fn(logp, target, length, mean, logv, z, nll=nll, N=1,
eos_idx=dataset.eos_idx,
pad_idx=dataset.pad_idx,
):
batch_size = target.size(0)
# do not count probability over <eos> toekn
eos_I = (target == eos_idx)
target[eos_I] = pad_idx
# cut-off unnecessary padding from target, and flatten
target = target[:, :torch.max(length).item()].contiguous().view(-1)
# dataset size
N = torch.tensor(N).type_as(logp)
log_p_x_given_z = logp.view(-1, logp.size(2))
q_z_given_x = torch.distributions.Normal(
loc=mean,
scale=torch.exp(0.5 * logv),
)
log_q_z_given_x = q_z_given_x.log_prob(z).sum(-1)
# conditional entropy
H_p_x_given_z = nll(log_p_x_given_z, target).view((batch_size, -1)).sum(-1)
if model.args.mim:
log_p_z = log_q_z_given_x - torch.log(N)
else:
p_z = model.get_prior()
log_p_z = p_z.log_prob(z)
if len(log_p_z.shape) > 1:
log_p_z = log_p_z.sum(-1)
# marginal entropy
CE_q_p_z = (-log_p_z)
H_q_z_given_x = (-log_q_z_given_x)
# KL divergence between q(z|x) and p(z)
KL_q_p = CE_q_p_z - H_q_z_given_x
# NLL upper bound
if model.args.mim:
# MELBO
H_p_x = H_p_x_given_z + torch.log(N)
else:
# ELBO
H_p_x = H_p_x_given_z + KL_q_p
return dict(
H_q_z_given_x=H_q_z_given_x,
CE_q_p_z=CE_q_p_z,
H_p_x_given_z=H_p_x_given_z,
H_p_x=H_p_x,
KL_q_p=KL_q_p,
)
def test_model(model=model, data_loader=data_loader, desc="", plot_dist=False,
base_fname=base_fname, compute_temperature=False):
"""
Compute various quantities for a model
"""
word_count = 0
N = len(data_loader.dataset)
B = N // args.batch_size
tracker = defaultdict(tensor)
all_z = []
for iteration, batch in tqdm(enumerate(data_loader),
desc=desc,
total=B,
):
batch_size = batch['input'].size(0)
for k, v in batch.items():
if torch.is_tensor(v):
batch[k] = to_var(v)
# Forward pass
logp, mean, logv, z = model(batch['input'], batch['length'])
all_z.append(z.detach().cpu().numpy())
# Model evaluation
loss_dict = loss_fn(logp, batch['target'],
batch['length'], mean, logv, z,
N=N,
)
# aggregate values
for k, v in loss_dict.items():
tracker[k] = torch.cat((tracker[k], v.detach().data))
# subtract <eos> token from word count
word_count = (word_count
+ batch['length'].sum().type_as(z)
- (batch['target'] == dataset.eos_idx).sum().type_as(z))
# BLEU
if args.test_bleu:
recon, _, recon_l = model.decode(
z=model.encode(batch['input'], batch['length']),
)
batch_bleu = []
for d, dl, r, rl in zip(batch['target'], batch['length'],
recon, recon_l):
cur_bleu = bleu_score.sentence_bleu(
references=[d[:dl].tolist()],
hypothesis=r[:rl].tolist(),
weights=(1.0,),
)
batch_bleu.append(cur_bleu)
tracker["BLEU"] = torch.cat((tracker["BLEU"], torch.tensor(batch_bleu)))
if model.latent_size > 300:
H_p_z = -1.0
else:
H_p_z = ee.entropy(np.concatenate(all_z[:1000], axis=0), base=np.e)
H_normal_z = float(model.latent_size) / 2 * (1 + np.log(2 * np.pi))
H_p_x_given_z_acc = tracker["H_p_x_given_z"].sum()
H_p_x_acc = tracker["H_p_x"].sum()
ppl_x_given_z = torch.exp(H_p_x_given_z_acc / word_count)
ppl_x = torch.exp(H_p_x_acc / word_count)
tracker["H_p_z"] = torch.tensor(H_p_z)
tracker["H_normal_z"] = torch.tensor(H_normal_z)
tracker["ppl_x_given_z"] = ppl_x_given_z
tracker["ppl_x"] = ppl_x
if plot_dist:
print_log("Saving images and data to base_fname = {base_fname}*".format(
base_fname=base_fname,
))
# Plot distribution of values
for k, v in tracker.items():
if v.numel() > 1:
v = v.cpu().detach().numpy()
fig = plt.figure()
plt.hist(v, density=True, bins=50)
# mean
plt.axvline(np.mean(v), lw=3, ls="--", c="k")
if k == "H_p_x":
# sample entropy
plt.axvline(np.log(len(v)), lw=3, ls="-", c="k")
fig.savefig(base_fname + "-" + k + ".png", bbox_inches='tight')
plt.close(fig)
# save data
np.save(base_fname + "-" + k + ".npy", v)
if compute_temperature:
model.temperature = np.std(all_z)
return {k: v.detach().mean().unsqueeze(0) for k, v in tracker.items()}
tracker = defaultdict(tensor)
for epoch in range(args.test_epochs):
cur_tracker = test_model(
model=model,
data_loader=data_loader,
desc="Batch [{:d} / {:d}]".format(epoch + 1, args.test_epochs),
plot_dist=(epoch == 0),
compute_temperature=(compute_temperature and (epoch == 0)),
)
for k, v in cur_tracker.items():
tracker[k] = torch.cat([tracker[k], cur_tracker[k]])
for k, v in tracker.items():
v_mean = v.detach().cpu().mean().numpy()
v_std = v.detach().cpu().std().numpy()
print_log("{k} = {v_mean} +/- {v_std}".format(
k=k,
v_mean=v_mean,
v_std=v_std,
))
stats[k] = [k, v_mean, v_std]
print_log("")
#=============================================================================#
# Save stats
#=============================================================================#
if len(stats):
with open(data_fname, 'w') as fh:
writer = csv.writer(fh)
for k, row in stats.items():
if isinstance(row, list):
writer.writerow(row)
else:
writer.writerow([k, row])
#=============================================================================#
# Sample
#=============================================================================#
if args.test_sample:
print_log("\n model.temperature = {temperature:e}\n".format(temperature=model.temperature))
aux.reset_seed(args.seed)
batches_in_samples = max(1, args.num_samples // args.batch_size)
all_samples = []
# all_z = []
for b in range(batches_in_samples):
samples, z, length = model.sample(
n=args.batch_size,
z=None,
mcmc=args.mcmc,
)
all_samples.append(samples.detach())
samples = torch.cat(all_samples, dim=0)[:args.num_samples]
print_log('----------SAMPLES----------\n')
for s in idx2word(samples, i2w=i2w, pad_idx=w2i['<pad>']):
print_log("SAMP: {}\n".format(s))
#=============================================================================#
# Reconstruction
#=============================================================================#
aux.reset_seed(args.seed)
# Reconstruct starting from <sos>
dataset.enforce_sos = True
data_loader = DataLoader(
dataset=dataset,
batch_size=args.batch_size,
shuffle=True,
)
# collect non-empty sentences
data_iter = iter(data_loader)
samples = {'input': [], 'target': [], 'length': []}
for data in data_iter:
for k, v in data.items():
if torch.is_tensor(v):
data[k] = to_var(v)
for i in range(args.batch_size):
if (data["length"][i] >= args.min_sample_length) and (data["length"][i] <= args.max_sample_length):
if args.no_unk_sample:
if ((data["input"][i] == dataset.unk_idx).sum() >= 1):
continue
for k, v in data.items():
if k in samples:
samples[k].append(v[i])
if len(samples["length"]) >= args.num_samples:
break
if len(samples["length"]) >= args.num_samples:
break
for k, v in samples.items():
samples[k] = torch.stack(v)[:args.num_samples]
z, mean, std = model.encode(samples['input'], samples['length'], return_mean=True, return_std=True)
z = z.detach()
mean = mean.detach()
mean_recon, _ = model.inference(z=mean)
mean_recon = mean_recon.detach()
z_recon, _ = model.inference(z=z)
z_recon = z_recon.detach()
pert, _ = model.inference(z=z + torch.randn_like(z) * args.pert * std)
pert = pert.detach()
print_log('----------RECONSTRUCTION----------\n')
for i, (d, mr, zr, p) in enumerate(zip(
idx2word(samples["input"], i2w=i2w, pad_idx=w2i['<pad>']),
idx2word(mean_recon, i2w=i2w, pad_idx=w2i['<pad>']),
idx2word(z_recon, i2w=i2w, pad_idx=w2i['<pad>']),
idx2word(pert, i2w=i2w, pad_idx=w2i['<pad>']),
)):
print_log("DATA: {}".format(d))
print_log("MEAN RECON: {}".format(mr))
print_log("Z RECON: {}".format(zr))
print_log("Z PERT: {}".format(p))
print_log("\n")
#=============================================================================#
# Interpolation
#=============================================================================#
if args.test_interp:
args.num_samples = min(args.num_samples, z.shape[0])
for i in range(args.num_samples - 1):
z1 = z[i].cpu().numpy()
z2 = z[i + 1].cpu().numpy()
z_L2 = np.sqrt(np.sum((z1 - z2)**2))
z_interp = to_var(torch.from_numpy(interpolate(start=z1, end=z2, steps=8)).float())
samples_interp, _ = model.inference(z=z_interp)
sample0 = samples["input"][i:i + 1]
sample1 = samples["input"][i + 1:i + 2]
print_log('-------INTERPOLATION [ z L2 = {zL2:.3f} ] {src} -> {dst} -------\n\n[ {sample} ]\n'.format(
src=i, dst=i + 1,
sample=idx2word(sample0, i2w=i2w, pad_idx=w2i['<pad>'])[0],
zL2=z_L2,
))
print_log(*idx2word(samples_interp, i2w=i2w, pad_idx=w2i['<pad>']), sep='\n\n')
print_log('\n[ {sample} ]\n'.format(
sample=idx2word(sample1, i2w=i2w, pad_idx=w2i['<pad>'])[0],
))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('checkpoints', metavar='N', type=str, nargs='+',
help='File or directory (e.g., /best.pytorch) path for checkpoint.')
parser.add_argument('-bs', '--batch_size', type=int, default=-1)
parser.add_argument('-n', '--num_samples', type=int, default=10)
parser.add_argument('-dd', '--data_dir', type=str, default='data/datasets')
parser.add_argument('--seed', type=int, default=1)
parser.add_argument('-ms', '--max_sequence_length', type=int, default=-1)
parser.add_argument('--create_data', action='store_true')
parser.add_argument('--min_occ', type=int, default=1)
parser.add_argument('-p', '--pert', type=float, default=10.0)
parser.add_argument('-s', '--split', type=str, default="test")
parser.add_argument('-t', '--test', action='store_true')
parser.add_argument('-te', '--test_epochs', type=int, default=1)
parser.add_argument('-maxsl', '--max_sample_length', type=int, default=60)
parser.add_argument('-minsl', '--min_sample_length', type=int, default=2)
parser.add_argument('--no_unk_sample', action='store_true')
parser.add_argument('--test_as_marginal', action='store_true')
parser.add_argument('--mcmc', type=int, default=0)
parser.add_argument('-sm', '--sample_mode', type=str, default="")
# by default will use 1/latent_size ^ 0.5
parser.add_argument('-temp', '--temperature', type=float, default=0.0)
parser.add_argument('--test_bleu', action='store_true')
parser.add_argument('--test_sample', action='store_true')
parser.add_argument('--test_interp', action='store_true')
args = parser.parse_args()
for i, checkpoint_fname in enumerate(args.checkpoints):
if os.path.isdir(checkpoint_fname):
checkpoint_fname = os.path.join(checkpoint_fname, "best.pytorch")
print("""
******************************************
[ {i: 3d} / {n: 3d} ] {checkpoint_fname}
******************************************
""".format(
i=i + 1,
n=len(args.checkpoints),
checkpoint_fname=checkpoint_fname,
))
try:
with torch.no_grad():
main(checkpoint_fname, args)
except:
traceback.print_exc()