-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathbuild_models.py
executable file
·228 lines (162 loc) · 6.17 KB
/
build_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
#!/usr/bin/env python
import pandas
import numpy as np
from sklearn import svm
from sklearn import preprocessing
from sklearn.tree import DecisionTreeClassifier
from sklearn.externals import joblib
from scipy.signal import savgol_filter
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt # noqa
import warnings # noqa
warnings.filterwarnings(action="ignore",
module="scipy",
message="^internal gelsd")
class ModelBuilderMixin:
# All train files are 5Hz, window size is 3 sec
FREQ = 5
WINDOW = FREQ * 3
def preprocess_file(self, df):
df['h_speed'] = (df['velN']**2 + df['velE']**2) ** 0.5 * 3.6
df['v_speed'] = df['velD'] * 3.6
df['h_speed'] = savgol_filter(df['h_speed'],
self.WINDOW,
0,
mode='nearest')
df['v_speed'] = savgol_filter(df['v_speed'],
self.WINDOW,
0,
mode='nearest')
return df
class FlightModelBuilder(ModelBuilderMixin):
def __init__(self):
self.features_list = ['h_speed', 'v_speed']
self.df = self.train_dataset()
def call(self):
self.train_model()
self.save_model()
self.save_model_plot()
self.save_data_distribution_plot()
def train_model(self):
print('--- Training model')
# Filter only by Flight and Canopy classes
self.df = self.df.loc[self.df['class'].isin([2, 3])]
self.df['is_flight'] = (self.df['class'] == 2).astype('float')
self.scaler = preprocessing.StandardScaler()
self.df[self.features_list] = (
self.scaler.fit_transform(self.df[self.features_list])
)
X = self.df[self.features_list]
y = self.df['is_flight']
self.clf = svm.SVC(kernel='rbf', gamma=1.0, C=0.1)
self.clf.fit(X, y)
def save_model(self):
print('--- Saving model to file')
joblib.dump(self.clf, 'model/flight.pkl')
joblib.dump(self.scaler, 'model/flight_scaler.pkl')
def save_model_plot(self):
print('--- Saving SVM plot')
plt.figure()
plt.title('SVM RBF Kernel')
plt.scatter(
self.df['h_speed'],
self.df['v_speed'],
c=self.df['is_flight'],
zorder=10,
s=2
)
x_min, x_max = self.df['h_speed'].min(), self.df['h_speed'].max()
y_min, y_max = self.df['v_speed'].min(), self.df['v_speed'].max()
h = 0.01
XX, YY = np.meshgrid(np.arange(x_min, x_max, h),
np.arange(y_min, y_max, h))
Z = self.clf.predict(np.c_[XX.ravel(), YY.ravel()]).reshape(XX.shape)
ax = plt.gca()
ax.pcolormesh(XX, YY, Z, alpha=0.1)
plt.savefig('tracksegmenter/static/svm_plot.png')
def save_data_distribution_plot(self):
print('--- Saving value distribution plot')
plt.figure()
plt.title('Examples by class')
map_dict = {0: 'Canopy', 1: 'Flight'}
series = self.df['is_flight'].map(map_dict)
values = series.value_counts()
values.plot(kind='bar', colormap='Set2')
plt.xticks(rotation=0)
plt.savefig('tracksegmenter/static/values_plot.png')
def train_dataset(self):
from glob import glob
directory = glob('./data/train/flight/*.csv')
train_files = list()
for name in directory:
df = pandas.read_csv(name)
df = self.preprocess_file(df)
train_files.append(df)
return pandas.concat(train_files)
class AircraftModelBuilder(ModelBuilderMixin):
def __init__(self):
self.df = self.train_dataset()
def call(self):
self.train_model()
self.save_model()
def train_model(self):
print('--- Training model')
X = self.df[['h_speed', 'v_speed', 'gr']]
y = self.df['is_aircraft']
self.clf = DecisionTreeClassifier(criterion='entropy', max_depth=5)
self.clf.fit(X, y)
def save_model(self):
print('--- Saving model to file')
joblib.dump(self.clf, 'model/aircraft.pkl')
def train_dataset(self):
from glob import glob
directory = glob('./data/train/aircraft/*.csv')
train_files = list()
for name in directory:
df = pandas.read_csv(name)
df = self.preprocess_file(df)
train_files.append(df)
return pandas.concat(train_files)
def preprocess_file(self, df):
df = super().preprocess_file(df)
df['is_aircraft'] = (df['class'] == 4).astype('float')
df['gr'] = df['h_speed'] / df['v_speed']
df['gr'] = df['gr'].replace([np.inf, -np.inf], np.nan).bfill()
return df
class GroundModelBuilder(ModelBuilderMixin):
def __init__(self):
self.df = self.train_dataset()
def call(self):
self.train_model()
self.save_model()
def train_model(self):
print('--- Training model')
X = self.df[['h_speed', 'v_speed', 'altitude_chng']]
y = self.df['is_ground']
self.clf = DecisionTreeClassifier(criterion='entropy', max_depth=5)
self.clf.fit(X, y)
def save_model(self):
print('--- Saving model to file')
joblib.dump(self.clf, 'model/ground.pkl')
def train_dataset(self):
from glob import glob
directory = glob('./data/train/ground/*.csv')
train_files = list()
for name in directory:
df = pandas.read_csv(name)
df = self.preprocess_file(df)
train_files.append(df)
return pandas.concat(train_files)
def preprocess_file(self, df):
df = super().preprocess_file(df)
df['is_ground'] = (df['class'] == 1).astype('float')
df['altitude_chng'] = (df['hMSL'].rolling(window=25).std()).bfill()
return df
if __name__ == '__main__':
print('### Flight model')
FlightModelBuilder().call()
print('\n### Aircraft model')
AircraftModelBuilder().call()
print('\n### Ground model')
GroundModelBuilder().call()