-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlanes2.py
68 lines (62 loc) · 1.98 KB
/
lanes2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import cv2
import numpy as np
import matplotlib.pyplot as plt
def make_coordinates(image, line_parameters):
slope,intercept = line_parameters
y1 = image.shape[0]
y2 = int(y1*(3/5))
x1 = int((y1-intercept)/slope)
x2 = int((y2-intercept)/slope)
#print(image.shape)
return np.array([x1,y1,x2,y2])
def averaged_slope_intercept (image,lines):
left_fit = []
right_fit = []
for line in lines:
x1,y1,x2,y2 = line.reshape(4)
parameters = np.polyfit((x1,x2),(y1,y2),1)
slope = parameters[0]
intercept = parameters[1]
if slope < 0:
left_fit.append((slope,intercept))
else:
right_fit.append((slope,intercept))
left_fit_avg = np.average(left_fit,axis=0)
right_fit_avg = np.average(right_fit,axis=0)
left_line = make_coordinates(image,left_fit_avg)
right_line = make_coordinates(image,right_fit_avg)
print (parameters)
def canny(image):
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
blur = cv2.GaussianBlur(gray, (5, 5),0)
canny = cv2.Canny(blur,80,400)
return canny
def display_lines (image,lines):
line_image = np.zeros_like(image)
if lines is not None:
for line in lines:
x1,y1,x2,y2 = line.reshape(4)
cv2.line(line_image,(x1,y1),(x2,y2),(255,0,0),10)
print (line)
return line_image
def region_of_interest(image):
height = image.shape[0]
polygons = np.array([
[(170,height),(810,height),(500,250)]
])
mask = np.zeros_like(image)
cv2.fillPoly(mask,polygons, 255)
masked_image = cv2.bitwise_and(image, mask) # used to mask the image only to show the region of interest
return masked_image
image = cv2.imread('test_image3.jpg')
lane_image = np.copy(image)
canny = canny(lane_image)
cropped_image = region_of_interest(canny)
lines = cv2.HoughLinesP(cropped_image, 2, np.pi/180,100,np.array([]),minLineLength = 40, maxLineGap = 8)
averaged_lines = averaged_slope_intercept(lane_image, lines)
line_image = display_lines(lane_image,lines)
combo_img = cv2.addWeighted(lane_image,0.8, line_image,1,1 )
#plt.imshow (canny)
#plt.show()
cv2.imshow('result',combo_img)
cv2.waitKey(0)