-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset_dvae.py
35 lines (27 loc) · 1.11 KB
/
dataset_dvae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import glob
import os
from PIL import Image
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms
class ImageFolder(Dataset):
def __init__(self, img_path_list, transform):
self.img_path_list = img_path_list
self.transform = transform
def __len__(self):
return len(self.img_path_list)
def __getitem__(self, item):
img = Image.open(self.img_path_list[item])
return self.transform(img)
def get_dataloader(batch_size, img_size):
img_path_list_celeba = glob.glob(os.path.join("data", "celeba", "*"))
img_path_list_ffhq = glob.glob(os.path.join("data", "ffhq", "*", "*"))
img_path_list = img_path_list_celeba + img_path_list_ffhq
transform = transforms.Compose([
transforms.Resize(img_size),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
train_set = ImageFolder(img_path_list, transform=transform)
train_loader = DataLoader(dataset=train_set, num_workers=1, batch_size=batch_size, shuffle=True)
return train_loader