-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path5_evaluation.py
247 lines (204 loc) · 13.1 KB
/
5_evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import faiss
import numpy as np
import time
import torch
import pandas as pd
import random
from Triplet_Network import TripletResNet_features
import torch.nn as nn
import torch
import os
import argparse
from functions import split_by_artist_given, split_by_strata_artist, split_by_strata_artist_designer, split_by_artist_random, split_based_on_popularity
class Evaluation():
def __init__(self,dataset_name,df,feature,device,mode):
self.keep_without_influencers = False
self.dataset_name = dataset_name
self.feature = feature
self.device = device
self.df = df
self.df_mode = self.df[self.df['mode'] == mode].copy()
self.dict_influence_indexes, self.artist_to_paintings, self.dict_influenced_by = self.get_dictionaries()
def mean_reciprocal_rank(self,ground_truth, ranked_lists):
"""
Compute the Mean Reciprocal Rank (MRR) for a set of queries.
Parameters:
ground_truth (dict): Dictionary where keys are query IDs and values are lists of relevant document IDs.
ranked_lists (dict): Dictionary where keys are query IDs and values are ranked lists of document IDs.
Returns:
float: Mean Reciprocal Rank (MRR) value.
"""
total_rr = 0.0
num_queries = len(ground_truth)
for query_id, relevant_docs in ground_truth.items():
if query_id in ranked_lists:
ranked_list = ranked_lists[query_id]
reciprocal_rank = 0.0
for i, doc_id in enumerate(ranked_list, start=1):
if doc_id in relevant_docs:
reciprocal_rank = 1.0 / i
break
total_rr += reciprocal_rank
if num_queries > 0:
return total_rr / num_queries
else:
return 0.0 # Return 0 if there are no queries
def get_dictionaries(self):
dict_influenced_by = self.df_mode.groupby('artist_name')['influenced_by'].first().to_dict()
artist_to_paintings = {}
for index, row in self.df.iterrows():
artist = row['artist_name']
artist_to_paintings.setdefault(artist, []).append(index)
artist_to_influencer_paintings = {
artist: [
painting for influencer in influencers if influencer in artist_to_paintings
for painting in artist_to_paintings[influencer]
]
for artist, influencers in dict_influenced_by.items()
}
return artist_to_influencer_paintings, artist_to_paintings, dict_influenced_by
def vector_similarity_search_group(self,query_indexes, index_list):
'''Search for similar vectors in the dataset using faiss library'''
k = 10
xb = torch.stack(self.df.loc[index_list, self.feature].tolist())
d = xb.shape[1]
index = faiss.IndexFlatL2(d)
if xb.shape[0] < 1000:
index = faiss.IndexFlatL2(d)
else:
nlist = 10
quantizer = faiss.IndexFlatL2(d)
index = faiss.IndexIVFFlat(quantizer, d, nlist)
if self.device == 'cuda':
index = faiss.index_cpu_to_all_gpus(index)
index.train(xb.cpu().numpy() if self.device != 'cuda' else xb)
index.add(xb.cpu().numpy() if self.device != 'cuda' else xb)
for query in query_indexes:
query_vector = self.df[self.feature].tolist()[query]
D, I = index.search(query_vector.reshape(1,-1), k)
I = [index_list[i] for i in list(I[0])]
self.df_mode.at[query, f'pos_ex_{self.feature}'] = I
return self.df_mode[f'pos_ex_{self.feature}']
def retrieval(self):
grouped = self.df_mode.groupby('artist_name')
self.df_mode.loc[:,f'pos_ex_{self.feature}'] = [None]*len(self.df_mode)
for artist, group in grouped:
queries = [i for i in list(group.index)]
artist_index_list = self.artist_to_paintings[artist]
#if agent has as influencer only himself (mostly for idesigner)
if self.df_mode[self.df_mode['artist_name']==artist].reset_index().influenced_by[0][0] == artist and len(self.df_mode[self.df_mode['artist_name']==artist].reset_index().influenced_by[0])==1:
index_list = list(set(self.df.index.tolist()))
else:
index_list = list(set(self.df.index.tolist()) - set(artist_index_list))
if self.dataset_name == "wikiart": #not consider objects with date higher than the max of the artist grouped
index_date_higher = self.df[self.df['date_filled'] >= int(group['date_filled'].max())].index.tolist()
index_list = sorted(list(set(index_list) - set(index_date_higher)))
self.df_mode[f'pos_ex_{self.feature}'] = self.vector_similarity_search_group(queries, index_list)
return self.df_mode[f'pos_ex_{self.feature}']
def metrics_per_query(self, queries, results, influencers_list):
p_10_sum, mrr_sum = 0,0
precision_dict_list = []
for i in queries:
p_10 = len([j for j in results[i] if j in influencers_list])/10
dict_results = {k: results[i][:k] for k in range(1, len(results[i]) + 1)}
dict_influencers_in_results = {key: [value for value in values if value in influencers_list] for key, values in dict_results.items()}
precision_dict = {k: len(v)/k for k,v in dict_influencers_in_results.items()}
mrr = self.mean_reciprocal_rank({i:influencers_list}, {i:results[i]})
p_10_sum += p_10
mrr_sum += mrr
precision_dict_list.append(precision_dict)
return p_10_sum,precision_dict_list,mrr_sum
def evaluate_retrieval(self):
precision_at_k_sum , precision_at_k_second_degree_sum, mrr_sum_,mrr_second_degree_sum= 0,0,0,0
precision_at_k_artist, precision_at_k_artist_second_degree = {}, {}
precisions_dict_result, precisions_dict_result_second_degree = {}, {}
mrr_artist, mrr_artist_second_degree = {}, {}
grouped = self.df_mode.groupby('artist_name')
self.df_mode[f'pos_ex_{self.feature}'] = self.retrieval()
for artist, group in grouped:
queries = [i for i in list(group.index)]
#ground truth
influencers_list = self.dict_influence_indexes[artist]
artist_influencers = [j for j in self.dict_influenced_by[artist] if j in self.dict_influence_indexes.keys()]
second_degree_influencers = [self.dict_influence_indexes[j] for j in artist_influencers]
if len(second_degree_influencers) > 0:
second_degree_influencers = second_degree_influencers[0] + influencers_list
else:
second_degree_influencers = influencers_list
#retrieved metrics
p_10_sum, precision_dict_list,mrr_sum= self.metrics_per_query(queries, self.df_mode[f'pos_ex_{self.feature}'],influencers_list )
p_10_sum_second, precision_dict_list_second,mrr_sum_second = self.metrics_per_query(queries, self.df_mode[f'pos_ex_{self.feature}'],second_degree_influencers )
precision_at_k_sum += p_10_sum
precision_at_k_second_degree_sum += p_10_sum_second
mrr_sum_ += mrr_sum
mrr_second_degree_sum += mrr_sum_second
precision_at_k_artist[artist],precision_at_k_artist_second_degree[artist] = round(p_10_sum/len(queries),3), round(p_10_sum_second/len(queries),3)
mrr_artist[artist], mrr_artist_second_degree[artist] = round(mrr_sum/len(queries),3), round(mrr_sum_second/len(queries),3)
#precision at different k
precisions_dict_result[artist] = {key: round(sum(d[key] for d in precision_dict_list) / len(precision_dict_list),3) for key in precision_dict_list[0]}
precisions_dict_result_second_degree[artist] = {key: round(sum(d[key] for d in precision_dict_list_second) / len(precision_dict_list_second),3) for key in precision_dict_list_second[0]}
precision_at_k_mean = round(precision_at_k_sum/len(self.df_mode),3)
precision_at_k_second_degree_mean = round(precision_at_k_second_degree_sum/len(self.df_mode),3)
mrr_mean = round(mrr_sum_/len(self.df_mode),3)
mrr_second_degree_mean = round(mrr_second_degree_sum/len(self.df_mode),3)
print(f'Precision at k10 for artist: {precision_at_k_mean}, MRR for artist: {mrr_mean}')
print(f'Precision at k10 for second degree artist: {precision_at_k_second_degree_mean}, MRR for second degree artist: {mrr_second_degree_mean}')
print('---------------------------------------')
print(' ')
IR_metrics = { 'retrieved_indexes': self.df_mode[f'pos_ex_{self.feature}'], 'precision_at_k_artist': precision_at_k_artist, 'mrr_artist': mrr_artist, 'precision_at_k_artist_second_degree': precision_at_k_artist_second_degree, 'mrr_artist_second_degree': mrr_artist_second_degree, 'precisions_dict_result': precisions_dict_result, 'precisions_dict_result_second_degree': precisions_dict_result_second_degree,'precision_at_k_mean' : precision_at_k_mean , 'precision_at_k_second_degree_mean': precision_at_k_second_degree_mean, 'mrr_mean': mrr_mean,'mrr_second_degree_mean': mrr_second_degree_mean}
return IR_metrics
def main(dataset_name, feature,data_split, num_examples,positive_based_on_similarity, negative_based_on_similarity,artist_splits):
device = torch.device("cuda" if torch.cuda.is_available() else "mps")
mode = 'val'
how_feature_positive = 'posfaiss' if positive_based_on_similarity else 'posrandom'
how_feature_negative = 'negfaiss' if negative_based_on_similarity else 'negrandom'
margin = 1
if dataset_name == 'wikiart':
if 'clip' in feature:
df = pd.read_pickle('DATA/Dataset/wikiart/wikiartINFL_clip.pkl')
else:
df = pd.read_pickle('DATA/Dataset/wikiart/wikiartINFL.pkl')
if data_split == "stratified_artists":
df = split_by_strata_artist(df)
elif dataset_name == 'fashion':
if 'clip' in feature:
df = pd.read_pickle('DATA/Dataset/iDesigner/idesignerINFL_clip.pkl')
else:
df = pd.read_pickle('DATA/Dataset/iDesigner/idesignerINFL.pkl')
if data_split == "stratified_artists":
df = df
if data_split == "random_artists":
df = split_by_artist_random(df)
if data_split == "popular_artists":
df = split_based_on_popularity(df)
model = TripletResNet_features(df.loc[0,feature].shape[0])
print(f'BASELINE METRIC with {feature}')
if os.path.exists(f'trained_models/{dataset_name}/{data_split}/baseline_IR_metrics') == False:
os.makedirs(f'trained_models/{dataset_name}/{data_split}/baseline_IR_metrics')
IR_metrics_baseline = Evaluation(dataset_name, df,feature,device,mode).evaluate_retrieval()
torch.save(IR_metrics_baseline,f'trained_models/{dataset_name}/{data_split}/baseline_IR_metrics/{feature}_{mode}.pth')
trained_model_path = f'trained_models/{dataset_name}/{data_split}/TripletResNet_{feature}_{how_feature_positive}_{how_feature_negative}_{num_examples}_margin{margin}_notrans_epoch_30'
print(f'Features with model {trained_model_path}')
model_path = trained_model_path + '/model.pth'
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
model.eval()
df[f'trained_{feature}'] = df[feature].apply(lambda x: model.forward_once(x).detach())
IR_metrics = Evaluation(dataset_name,df,f'trained_{feature}',device,mode).evaluate_retrieval()
if os.path.exists(f'{trained_model_path}/IR_metrics') == False:
os.makedirs(f'{trained_model_path}/IR_metrics')
torch.save(IR_metrics, f'{trained_model_path}/IR_metrics/metrics_{mode}.pth')
if __name__ == '__main__':
start_time = time.time()
parser = argparse.ArgumentParser(description="Evaluation of the model under IR task")
parser.add_argument('--dataset_name', type=str, default='wikiart', choices=['wikiart', 'fashion'])
parser.add_argument('--feature', type=str, default='image_features', help='image_features text_features image_text_features')
parser.add_argument('--artist_splits', action='store_true',help= 'create dataset excluding a gievn artist from training set' )
parser.add_argument('--data_split', type=str, default = 'stratified_artists', help= ['stratified_artists', 'random_artists' 'popular_artists'])
parser.add_argument('--num_examples', type=int, default=10, help= 'How many examples for each anchor')
parser.add_argument('--positive_based_on_similarity',action='store_true',help='Sample positive examples based on vector similarity or randomly')
parser.add_argument('--negative_based_on_similarity', action='store_true',help='Sample negative examples based on vector similarity or randomly')
args = parser.parse_args()
main(args.dataset_name,args.feature,args.data_split, args.num_examples,args.positive_based_on_similarity, args.negative_based_on_similarity, args.artist_splits)
end_time = time.time()
elapsed_time = end_time - start_time
print("Time required to extract the features: {:.2f} seconds".format(elapsed_time))