-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimulation.py
323 lines (301 loc) · 9.75 KB
/
simulation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
import numpy as np
import pandas as pd
from tivlib.preprocess import get_ioe0, get_rb0, get_hc0
from tivlib.stats import slow_stochastic
from tivlib.utils import show_pnl
import matplotlib.pyplot as plt
from scipy import stats
def select_security(security):
if security == 'iron':
return get_ioe0()
elif security == 'rebar':
return get_rb0()
elif security == 'hot coil':
return get_hc0()
# === Technical Indicators ===
def slow_stochastic_strategy(security,
window=5,
lower=0.2,
upper=0.8,
out_sample_start=None,
return_directions=False):
df = select_security(security)
ss = slow_stochastic(close = df['Close'],
high = df['High'],
low = df['Low'],
window = window)
direction = []
position = 0
ss_below = False
ss_above = False
for value in ss:
if value > lower and ss_below:
position = 1
ss_below = False
elif value < upper and ss_above:
position = -1
ss_above = False
elif value < lower:
ss_below = True
elif value > upper:
ss_above = True
direction.append(position)
direction = np.array(direction)
if return_directions:
return direction
if out_sample_start is None:
show_pnl(direction, df["Settle"])
else:
os_data = df["Settle"][out_sample_start:]
os_direction = direction[-len(os_data):]
show_pnl(os_direction, os_data)
def moving_average_crossover_strategy(security, window=5, opp_direction = False,
out_sample_start=None,
return_directions=False):
df = select_security(security)
mva = df["Settle"].rolling(center=False, window=window).mean()
direction = []
position = 0
mva_below = False
mva_above = False
for i, value in enumerate(mva):
if value > df["Settle"][i] and mva_below:
position = 1
mva_below = False
elif value < df["Settle"][i] and mva_above:
position = -1
mva_above = False
elif value < df["Settle"][i]:
mva_below = True
elif value > df["Settle"][i]:
mva_above = True
direction.append(position)
direction = np.array(direction)
if return_directions:
return direction
if opp_direction:
direction = -direction
if out_sample_start is None:
show_pnl(direction, df["Settle"])
else:
os_data = df["Settle"][out_sample_start:]
os_direction = direction[-len(os_data):]
show_pnl(os_direction, os_data)
def macd_strategy(security, long=26, mid=12, short=9,
use_divergence=False,
out_sample_start=None,
return_directions=False):
"""
default MACD(26, 12, 9) is used
"""
df = select_security(security)
ema_long = df['Settle'].ewm(span=long, adjust=False).mean()
ema_mid = df['Settle'].ewm(span=mid, adjust=False).mean()
macd = ema_mid - ema_long
macd_ema_short = macd.ewm(span=short, adjust=False).mean()
divergence = macd - macd_ema_short
direction = []
position = 0
if use_divergence:
div_prev = 0
for i in range(df.shape[0]):
if divergence[i] > div_prev:
position = 1
else:
position = -1
direction.append(position)
div_prev = divergence[i]
else:
for i in range(df.shape[0]):
if macd[i] > macd_ema_short[i]:
position = 1
else:
position = -1
direction.append(position)
direction = np.array(direction)
if return_directions:
return direction
if out_sample_start is None:
show_pnl(direction, df["Settle"])
else:
os_data = df["Settle"][out_sample_start:]
os_direction = direction[-len(os_data):]
show_pnl(os_direction, os_data)
def rsi_strategy(security, window=14, out_sample_start=None,
upper=70, lower=30, return_directions=False):
"""
default RSI(14) is used
"""
df = select_security(security)
pnl = df['Settle']- df['Settle'].shift(1)
profit = pnl.clip(lower=0, upper=None)
loss = pnl.clip(lower=None, upper=0)
avg_profit = profit.rolling(window=window).mean()
avg_loss = loss.rolling(window=window).mean()
rsi = 100 -100/(1 + avg_profit/abs(avg_loss))
direction = []
position = 0
for i in range(df.shape[0]):
if rsi[i] > upper:
position = 1
if rsi[i] < lower:
position = -1
direction.append(position)
direction = np.array(direction)
if return_directions:
return direction
if out_sample_start is None:
show_pnl(direction, df["Settle"])
else:
os_data = df["Settle"][out_sample_start:]
os_direction = direction[-len(os_data):]
show_pnl(os_direction, os_data)
def bollinger_bands_strategy(security, window=14, out_sample_start=None,
upper=70, lower=30, return_directions=False):
"""
default RSI(14) is used
"""
df = select_security(security)
pnl = df['Settle']- df['Settle'].shift(1)
profit = pnl.clip(lower=0, upper=None)
loss = pnl.clip(lower=None, upper=0)
avg_profit = profit.rolling(window=window).mean()
avg_loss = loss.rolling(window=window).mean()
rsi = 100 -100/(1 + avg_profit/abs(avg_loss))
direction = []
position = 0
for i in range(df.shape[0]):
if rsi[i] > upper:
position = 1
if rsi[i] < lower:
position = -1
direction.append(position)
direction = np.array(direction)
if return_directions:
return direction
if out_sample_start is None:
show_pnl(direction, df["Settle"])
else:
os_data = df["Settle"][out_sample_start:]
os_direction = direction[-len(os_data):]
show_pnl(os_direction, os_data)
def dmi_strategy(security, window=14, out_sample_start=None,
use_divergence=False,
return_directions=False):
"""
directional movement index
"""
df = select_security(security)
pnl = df['Settle']- df['Settle'].shift(1)
upward = np.where((df['Settle'] - df['High'].shift(1)) > 0, 1, 0)
downward = np.where((df['Settle'] - df['Low'].shift(1)) < 0, 1, 0)
upward_sum = pd.Series(upward).rolling(window=window).sum()
downward_sum = pd.Series(downward).rolling(window=window).sum()
direction = None
if use_divergence:
divergence = upward_sum - downward_sum
direction = np.where(divergence > divergence.shift(1), 1, -1)
else:
direction = np.where(upward_sum >= downward_sum, 1, -1)
if return_directions:
return direction
if out_sample_start is None:
show_pnl(direction, df["Settle"])
else:
os_data = df["Settle"][out_sample_start:]
os_direction = direction[-len(os_data):]
show_pnl(os_direction, os_data)
# === Trend Following ===
def trend_delay_strategy(security, delay=1, out_sample_start=None,
return_directions=False):
df = select_security(security)
direction = np.sign(df['Settle'] - df['Settle'].shift(delay))
direction = direction.fillna(0)
if return_directions:
return direction
if out_sample_start is None:
show_pnl(direction, df["Settle"])
else:
os_data = df["Settle"][out_sample_start:]
os_direction = direction[-len(os_data):]
show_pnl(os_direction, os_data)
def master_strategy(security, out_sample_start=None, return_directions=False):
df = select_security(security)
direction = None
if security == 'iron':
dir1 = slow_stochastic_strategy(security=security,
window=2,
lower=0.4,
upper=0.6,
out_sample_start=out_sample_start,
return_directions=True)
dir2 = moving_average_crossover_strategy(security=security,
window=20,
opp_direction=True,
out_sample_start=out_sample_start,
return_directions=True)
dir3 = macd_strategy(security=security,
long=25,
mid=12,
short=2,
use_divergence=True,
out_sample_start=out_sample_start,
return_directions=True)
directions = np.stack((dir1, dir2, dir3), axis=1)
direction = stats.mode(directions, axis=1)[0]
direction = direction.reshape((direction.shape[0]))
direction = np.array(direction)
elif security == 'rebar':
dir1 = slow_stochastic_strategy(security=security,
window=2,
lower=0.3,
upper=0.7,
out_sample_start=out_sample_start,
return_directions=True)
dir2 = moving_average_crossover_strategy(security=security,
window=5,
opp_direction=True,
out_sample_start=out_sample_start,
return_directions=True)
dir3 = macd_strategy(security=security,
long=26,
mid=12,
short=2,
use_divergence=True,
out_sample_start=out_sample_start,
return_directions=True)
directions = np.stack((dir1, dir2, dir3), axis=1)
direction = stats.mode(directions, axis=1)[0]
direction = direction.reshape((direction.shape[0]))
direction = np.array(direction)
elif security == 'hot coil':
dir1 = slow_stochastic_strategy(security=security,
window=7,
lower=0.4,
upper=0.6,
out_sample_start=out_sample_start,
return_directions=True)
dir2 = moving_average_crossover_strategy(security=security,
window=2,
opp_direction=True,
out_sample_start=out_sample_start,
return_directions=True)
dir3 = macd_strategy(security=security,
long=26,
mid=12,
short=2,
use_divergence=True,
out_sample_start=out_sample_start,
return_directions=True)
directions = np.stack((dir1, dir2, dir3), axis=1)
direction = stats.mode(directions, axis=1)[0]
direction = direction.reshape((direction.shape[0]))
direction = np.array(direction)
if return_directions:
return direction
if out_sample_start is None:
show_pnl(direction, df["Settle"])
else:
os_data = df["Settle"][out_sample_start:]
os_direction = direction[-len(os_data):]
show_pnl(os_direction, os_data)