-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathncf.py
467 lines (379 loc) · 15.1 KB
/
ncf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
import numpy as np
import theano
import theano.tensor as T
import keras
from keras import backend as K
from keras import initializations
from keras.regularizers import l1, l2, l1l2
from keras.models import Sequential, Model
from keras.layers.core import Dense, Lambda, Activation
from keras.layers import Embedding, Input, Dense, merge, Reshape, Merge, Flatten, Dropout
from keras.optimizers import Adagrad, Adam, SGD, RMSprop
from evaluate import evaluate_model
from time import time
import sys
import GMF, MLP
import argparse
import scipy.sparse as sp
import pandas as pd
import pickle
import matplotlib.pyplot as plt
DATA_PATH="data/"
USER_FILE=DATA_PATH+"users.csv"
MOVIES_FILE=DATA_PATH+"movies.csv"
RATINGS_FILE=DATA_PATH+"ratings_correctFormat.json"
TRAIN_FOLDS=["fold1_train.json", "fold2_train.json", "fold3_train.json", "fold4_train.json", "fold5_train.json"]
TEST_FOLDS=["fold1_test.json", "fold2_test.json", "fold3_test.json", "fold4_test.json", "fold5_test.json"]
RATINGS_MATRIX_FILE='e.pickle'
TRAIN_FOLDS_FILES=[]
TEST_FOLDS_FILES=[]
for i in TRAIN_FOLDS:
TRAIN_FOLDS_FILES.append(DATA_PATH+i)
for i in TEST_FOLDS:
TEST_FOLDS_FILES.append(DATA_PATH+i)
class User():
def __init__(self, name, languages, occupation, address, dob, gender):
self.name=name
self.languages=languages
self.occupation=occupation
self.address=address
self.dob=dob
self.gender=gender
def display(self):
print(self.name, self.languages, self.occupation, self.address, self.dob, self.gender)
class Movie():
def __init__(self, movie_id, description, language, released, rating, writer, director, cast, genre, name):
self.movie_id=movie_id
self.description=description
self.language=language
self.released=released
self.rating=rating
self.writer=writer
self.director=director
self.cast=cast
self.genre=genre
self.name=name
def display(self):
print(self.movie_id, self.description, self.language, self.released, self.rating, self.writer, self.director, self.cast, self.genre, self.name)
#################### Arguments ####################
def parse_args():
parser = argparse.ArgumentParser(description="Run NeuMF.")
# parser.add_argument('--path', nargs='?', default='Data/',
# help='Input data path.')
# parser.add_argument('--dataset', nargs='?', default='ml-1m',
# help='Choose a dataset.')
parser.add_argument('--epochs', type=int, default=100,
help='Number of epochs.')
parser.add_argument('--batch_size', type=int, default=256,
help='Batch size.')
parser.add_argument('--num_factors', type=int, default=8,
help='Embedding size of MF model.')
parser.add_argument('--layers', nargs='?', default='[64,32,16,8]',
help="MLP layers. Note that the first layer is the concatenation of user and item embeddings. So layers[0]/2 is the embedding size.")
parser.add_argument('--reg_mf', type=float, default=0,
help='Regularization for MF embeddings.')
parser.add_argument('--reg_layers', nargs='?', default='[0,0,0,0]',
help="Regularization for each MLP layer. reg_layers[0] is the regularization for embeddings.")
parser.add_argument('--num_neg', type=int, default=4,
help='Number of negative instances to pair with a positive instance.')
parser.add_argument('--lr', type=float, default=0.001,
help='Learning rate.')
parser.add_argument('--learner', nargs='?', default='adam',
help='Specify an optimizer: adagrad, adam, rmsprop, sgd')
parser.add_argument('--verbose', type=int, default=1,
help='Show performance per X iterations')
parser.add_argument('--out', type=int, default=1,
help='Whether to save the trained model.')
parser.add_argument('--mf_pretrain', nargs='?', default='',
help='Specify the pretrain model file for MF part. If empty, no pretrain will be used')
parser.add_argument('--mlp_pretrain', nargs='?', default='',
help='Specify the pretrain model file for MLP part. If empty, no pretrain will be used')
return parser.parse_args()
def init_normal(shape, name=None):
return initializations.normal(shape, scale=0.01, name=name)
def get_model(num_users, num_items, mf_dim=10, layers=[10], reg_layers=[0], reg_mf=0):
assert len(layers) == len(reg_layers)
num_layer = len(layers) #Number of layers in the MLP
# Input variables
user_input = Input(shape=(1,), dtype='float64', name = 'user_input')
item_input = Input(shape=(1,), dtype='float64', name = 'item_input')
# Embedding layer
MF_Embedding_User = Embedding(input_dim = num_users, output_dim = mf_dim, name = 'mf_embedding_user',
init = init_normal, W_regularizer = l2(reg_mf), input_length=1)
MF_Embedding_Item = Embedding(input_dim = num_items, output_dim = mf_dim, name = 'mf_embedding_item',
init = init_normal, W_regularizer = l2(reg_mf), input_length=1)
MLP_Embedding_User = Embedding(input_dim = num_users, output_dim = int(layers[0]//2), name = "mlp_embedding_user",
init = init_normal, W_regularizer = l2(reg_layers[0]), input_length=1)
MLP_Embedding_Item = Embedding(input_dim = num_items, output_dim = int(layers[0]//2), name = 'mlp_embedding_item',
init = init_normal, W_regularizer = l2(reg_layers[0]), input_length=1)
print(type(user_input))
# MF part
mf_user_latent = Flatten()(MF_Embedding_User(user_input))
mf_item_latent = Flatten()(MF_Embedding_Item(item_input))
mf_vector = merge([mf_user_latent, mf_item_latent], mode = 'mul') # element-wise multiply
# MLP part
mlp_user_latent = Flatten()(MLP_Embedding_User(user_input))
mlp_item_latent = Flatten()(MLP_Embedding_Item(item_input))
mlp_vector = merge([mlp_user_latent, mlp_item_latent], mode = 'concat')
for idx in range(1, num_layer):
layer = Dense(layers[idx], W_regularizer= l2(reg_layers[idx]), activation='relu', name="layer%d" %idx)
mlp_vector = layer(mlp_vector)
# Concatenate MF and MLP parts
#mf_vector = Lambda(lambda x: x * alpha)(mf_vector)
#mlp_vector = Lambda(lambda x : x * (1-alpha))(mlp_vector)
predict_vector = merge([mf_vector, mlp_vector], mode = 'concat')
# Final prediction layer
prediction = Dense(1, activation='sigmoid', init='lecun_uniform', name = "prediction")(predict_vector)
model = Model(input=[user_input, item_input],
output=prediction)
return model
def load_pretrain_model(model, gmf_model, mlp_model, num_layers):
# MF embeddings
gmf_user_embeddings = gmf_model.get_layer('user_embedding').get_weights()
gmf_item_embeddings = gmf_model.get_layer('item_embedding').get_weights()
model.get_layer('mf_embedding_user').set_weights(gmf_user_embeddings)
model.get_layer('mf_embedding_item').set_weights(gmf_item_embeddings)
# MLP embeddings
mlp_user_embeddings = mlp_model.get_layer('user_embedding').get_weights()
mlp_item_embeddings = mlp_model.get_layer('item_embedding').get_weights()
model.get_layer('mlp_embedding_user').set_weights(mlp_user_embeddings)
model.get_layer('mlp_embedding_item').set_weights(mlp_item_embeddings)
# MLP layers
for i in range(1, num_layers):
mlp_layer_weights = mlp_model.get_layer('layer%d' %i).get_weights()
model.get_layer('layer%d' %i).set_weights(mlp_layer_weights)
# Prediction weights
gmf_prediction = gmf_model.get_layer('prediction').get_weights()
mlp_prediction = mlp_model.get_layer('prediction').get_weights()
new_weights = np.concatenate((gmf_prediction[0], mlp_prediction[0]), axis=0)
new_b = gmf_prediction[1] + mlp_prediction[1]
model.get_layer('prediction').set_weights([0.5*new_weights, 0.5*new_b])
return model
def get_train_instances(train, num_negatives):
user_input, item_input, labels = [],[],[]
num_users = train.shape[0]
for (u, i) in train.keys():
# positive instance
user_input.append(u)
item_input.append(i)
labels.append(1)
# negative instances
for t in range(num_negatives):
j = np.random.randint(num_items)
# while train.has_key((u, j)):
while (u,j) in train:
j = np.random.randint(num_items)
user_input.append(u)
item_input.append(j)
labels.append(0)
return user_input, item_input, labels
def find_between(s, start, end):
index1=s.find(start)
index2=s.find(end, index1+1)
return (s[index1+2:index2])
def retrieve_users():
user_list=[]
with open(USER_FILE, 'rb') as f:
data=f.readlines()
for d in data[1:]:
l=d.decode('utf8').rstrip('\n').split(",")
n=len(l)
name=l[0][1:len(l[0])-1]
occupation=l[n-4][1:len(l[n-4])-1]
address=l[n-3][1:len(l[n-3])-1]
dob=l[n-2][1:len(l[n-2])-1]
gender=l[n-1][1:len(l[n-1])-1]
st='""'
lang_list=[]
for i in range(1,n-4):
result=find_between(l[i], st, st)
lang_list.append(result)
user_list.append(User(name, lang_list, occupation, address, dob, gender))
return user_list
def retrieve_movies():
movies_list=[]
data_frame=pd.read_csv(MOVIES_FILE)
movies_list=data_frame.values
return movies_list
def define_movie_id(movies):
movie_ids={}
for i in range(len(movies)):
movie_ids[movies[i][0]]=i
return movie_ids
def define_user_id(users):
user_ids={}
user_names={}
for i in range(len(users)):
user_ids[users[i].name]=i
for i in range(len(users)):
user_names[i]=users[i].name
return user_ids, user_names
def retrieve_ratings_matrix(movies, users, movie_ids, user_ids, user_names):
ratings_list=[]
data_frame=pd.read_json(RATINGS_FILE)
ratings_list=data_frame.values
rated_users=[]
ratings_of_users=[]
zero_ratings=[]
positive_ratings=[]
for i in range(len(ratings_list)):
rated_users.append(ratings_list[i][0])
ratings_of_users.append(ratings_list[i][1])
user_item_matrix=[]
ratings=[]
for i in range(len(users)):
l=[]
for j in range(len(movies)):
l.append(0)
user_item_matrix.append(l)
for i in range(len(rated_users)):
user_id=user_ids[rated_users[i]]
for key in list(ratings_of_users[i].keys()):
if('submit' not in key):
item_id=movie_ids[key]
user_item_matrix[user_id][item_id]=float(ratings_of_users[i][key][0])
li=[]
li.append(float(user_id))
li.append(float(item_id))
li.append(float(ratings_of_users[i][key][0]))
ratings.append(li)
if(float(ratings_of_users[i][key][0])==0):
zero_ratings.append([user_id, item_id])
else:
positive_ratings.append([user_id, item_id])
return np.asarray(user_item_matrix), np.asarray(ratings), zero_ratings, positive_ratings
def ratings_for_project(RATINGS_MATRIX):
ratings=[]
for i in range(len(RATINGS_MATRIX)):
for j in range(len(RATINGS_MATRIX[i])):
li=[]
li.append(i)
li.append(j)
li.append(RATINGS_MATRIX[i][j])
ratings.append(li)
return ratings
def get_ratings(RATINGS_MATRIX):
h = len(RATINGS_MATRIX)
w = len(RATINGS_MATRIX[0])
pos_rating_list = [] #user Id, item id
neg_rating_list = []
for i in range(h):
for j in range(w):
if RATINGS_MATRIX[i][j] > 0:
pos_rating_list.append([i , j])
else:
neg_rating_list.append([i , j])
return pos_rating_list , neg_rating_list
def train_test_split(self, test_size):
train=[]
test=[]
test_len=test_size*len(self.ratings)
for i in range(int(test_len)):
test.append(self.ratings[i])
for i in range(int(test_len), len(self.ratings)):
train.append(self.ratings[i])
return np.asarray(train), np.asarray(test)
# USERS=retrieve_users()
# MOVIES=retrieve_movies()
# MOVIE_IDS=define_movie_id(MOVIES)
# USER_IDS, USER_NAMES=define_user_id(USERS)
# RATINGS_MATRIX, RATINGS, NEGATIVE_RATINGS, POSITIVE_RATINGS=retrieve_ratings_matrix(MOVIES, USERS, MOVIE_IDS, USER_IDS, USER_NAMES)
# print(RATINGS_MATRIX.shape, RATINGS.shape)
RATINGS_MATRIX=pickle.load(open(RATINGS_MATRIX_FILE, 'rb'))
RATINGS=ratings_for_project(RATINGS_MATRIX)
NEGATIVE_RATINGS, POSITIVE_RATINGS = get_ratings(RATINGS_MATRIX)[::-1]
ITERATIONS=[]
LOSSES=[]
NDCGS=[]
args=parse_args()
path="./"
num_epochs=args.epochs
batch_size=args.batch_size
mf_dim=args.num_factors
layers=eval(args.layers)
reg_mf=args.reg_mf
reg_layers=eval(args.reg_layers)
num_negatives=args.num_neg
learning_rate=args.lr
learner=args.learner
verbose=args.verbose
mf_pretrain=args.mf_pretrain
mlp_pretrain=args.mlp_pretrain
topK=10
evaluation_threads=1
print("NeuMF arguments: %s " %(args))
model_out_file = './ _NeuMF_%d_%s_%d.h5' %(mf_dim, args.layers, time())
# Loading data
t1=time()
# pos_ratings,neg_ratings=load_rating_file_as_list('./data/ratings_correctFormat.json')
pos_ratings, neg_ratings=POSITIVE_RATINGS, NEGATIVE_RATINGS
test_size=int(0.2*len(pos_ratings))
testRatings=pos_ratings[:test_size]
testNegatives=neg_ratings[:test_size]
train_pos=pos_ratings[test_size:]
train_neg=neg_ratings[test_size:]
train=sp.dok_matrix((len(RATINGS_MATRIX), len(RATINGS_MATRIX[0])), dtype=np.float64)
for i in train_pos:
train[i[0], i[1]] = 1.0
num_users,num_items = train.shape
print("Load data done [%.1f s]. #user=%d, #item=%d, #train=%d, #test=%d"
%(time()-t1, num_users, num_items, train.nnz, len(testRatings)))
# Build model
model = get_model(num_users, num_items, mf_dim, layers, reg_layers, reg_mf)
if learner.lower() == "adagrad":
model.compile(optimizer=Adagrad(lr=learning_rate), loss='binary_crossentropy')
elif learner.lower() == "rmsprop":
model.compile(optimizer=RMSprop(lr=learning_rate), loss='binary_crossentropy')
elif learner.lower() == "adam":
model.compile(optimizer=Adam(lr=learning_rate), loss='binary_crossentropy')
else:
model.compile(optimizer=SGD(lr=learning_rate), loss='binary_crossentropy')
# Load pretrain model
if mf_pretrain != '' and mlp_pretrain != '':
gmf_model = GMF.get_model(num_users,num_items,mf_dim)
gmf_model.load_weights(mf_pretrain)
mlp_model = MLP.get_model(num_users,num_items, layers, reg_layers)
mlp_model.load_weights(mlp_pretrain)
model = load_pretrain_model(model, gmf_model, mlp_model, len(layers))
print("Load pretrained GMF (%s) and MLP (%s) models done. " %(mf_pretrain, mlp_pretrain))
# Init performance
(hits, ndcgs) = evaluate_model(model, testRatings, testNegatives, topK, evaluation_threads)
hr, ndcg = np.array(hits).mean(), np.array(ndcgs).mean()
print('Init: HR = %.4f, NDCG = %.4f' % (hr, ndcg))
best_hr, best_ndcg, best_iter = hr, ndcg, -1
if args.out > 0:
model.save_weights(model_out_file, overwrite=True)
# Training model
for epoch in range(num_epochs):
t1 = time()
# Generate training instances
user_input, item_input, labels = get_train_instances(train, num_negatives)
# Training
hist = model.fit([np.array(user_input), np.array(item_input)], #input
np.array(labels), # labels
batch_size=batch_size, nb_epoch=1, verbose=0, shuffle=True)
t2 = time()
# Evaluation
if epoch %verbose == 0:
(hits, ndcgs) = evaluate_model(model, testRatings, testNegatives, topK, evaluation_threads)
hr, ndcg, loss = np.array(hits).mean(), np.array(ndcgs).mean(), hist.history['loss'][0]
ITERATIONS.append(epoch)
LOSSES.append(loss)
NDCGS.append(ndcg)
print('Iteration %d [%.1f s]: HR = %.4f, NDCG = %.4f, loss = %.4f [%.1f s]'
% (epoch, t2-t1, hr, ndcg, loss, time()-t2))
if hr > best_hr:
best_hr, best_ndcg, best_iter = hr, ndcg, epoch
if args.out > 0:
model.save_weights(model_out_file, overwrite=True)
plt.plot(ITERATIONS, LOSSES)
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.show()
plt.plot(ITERATIONS, NDCGS)
plt.xlabel('Epochs')
plt.ylabel('NDCG')
plt.show()
print("End. Best Iteration %d: HR = %.4f, NDCG = %.4f. " %(best_iter, best_hr, best_ndcg))
if args.out > 0:
print("The best NeuMF model is saved to %s" %(model_out_file))