-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathfeature_extractors.py
147 lines (108 loc) · 4.51 KB
/
feature_extractors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import math
import torch
import torch.nn as nn
def conv3x3(in_planes, out_planes, stride=1):
return nn.Conv1d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
def downsample_basic_block(inplanes, outplanes, stride):
return nn.Sequential(
nn.Conv1d(inplanes, outplanes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm1d(outplanes),
)
class BasicBlock1D(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock1D, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm1d(planes)
self.relu1 = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm1d(planes)
self.relu2 = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu1(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu2(out)
return out
class ResNet1D(nn.Module):
def __init__(self, in_dim, out_dim):
super(ResNet1D, self).__init__()
self.inplanes = in_dim
self.downsample_block = downsample_basic_block
# add an extra conv layer. Note that this layer is not used in the original ResNet
self.conv2d = nn.Sequential(
nn.Conv2d(1, self.inplanes, (5, 5), (1, 1), (2, 2)),
nn.BatchNorm2d(self.inplanes),
nn.ReLU(inplace=True),
nn.MaxPool2d((1, 2), (1, 2), (0, 0)), # perform 1/2 downsampling. seq_len, 64, 80 -> seq_len, 64, 40
)
layers = [2, 2, 2, 2]
self.layer1 = self._make_layer(BasicBlock1D, 64, layers[0])
self.layer2 = self._make_layer(BasicBlock1D, 128, layers[1], stride=2)
self.layer3 = self._make_layer(BasicBlock1D, 256, layers[2], stride=2)
self.layer4 = self._make_layer(BasicBlock1D, out_dim, layers[3], stride=2)
self.avgpool = nn.AdaptiveAvgPool1d(1)
self.bn = nn.BatchNorm1d(out_dim)
# default init
for m in self.modules():
if isinstance(m, nn.Conv1d):
n = m.kernel_size[0] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm1d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = self.downsample_block(inplanes=self.inplanes,
outplanes=planes * block.expansion,
stride=stride)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x, x_lens):
x = x.unsqueeze(1) # (b, 1, t, 80)
x = self.conv2d(x) # (b, 64, t, 40)
x = x.permute(0, 2, 1, 3) # (b, t, 64, 40)
b, t, c, l = x.size()
x = x.contiguous().view(b * t, c, l)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x) # (b*t, out_dim, 1)
x = x.view(b * t, -1) # (b*t, out_dim)
x = self.bn(x)
x = x.view(b, t, -1) # (b, t, out_dim)
# perform subsampling by stacking every 4 time steps
if x.size(1) % 4 != 0:
x = x[:, :-(x.size(1) % 4), :]
x = x.contiguous().view(b, -1, 4, x.size(2)).mean(2) # (b, t//4, out_dim)
x_lens = x_lens // 4
return x, x_lens
class LinearFeatureExtractionModel(nn.Module):
def __init__(self, in_dim: int, out_dim: int):
super().__init__()
self.linear = nn.Sequential(
nn.Linear(in_dim, out_dim),
)
def forward(self, x, x_lens):
return self.linear(x), x_lens
if __name__ == "__main__":
model = ResNet1D(64, 256)
x = torch.randn(2, 100, 80)
x_lens = torch.tensor([100])
out, out_lens = model(x, x_lens)
print(x.size(), out.size(), x_lens, out_lens)