-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrain.py
172 lines (141 loc) · 5.75 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
# coding=utf-8
# Contact: bingquanxia@qq.com
import os
import sys
from dataclasses import dataclass, field
import tqdm
import torch
import torch.nn as nn
from torch.nn import functional as F
from tokenizer import CharTokenizer, SubwordTokenizer
from dataloader import get_dataloader
from models import Encoder, Decoder, Transformer
from feature_extractors import LinearFeatureExtractionModel, ResNet1D
def init_model(vocab_size, enc_dim, num_enc_layers, num_dec_layers, feature_extractor_type):
fbank_dim = 80
num_heads = enc_dim // 64
max_seq_len = 2048
if feature_extractor_type == "linear":
FeatureExtractor = LinearFeatureExtractionModel
elif feature_extractor_type == "resnet":
FeatureExtractor = ResNet1D
else:
raise ValueError(f"Unsupported feature extractor type: {feature_extractor_type}")
feature_extractor = FeatureExtractor(fbank_dim, enc_dim)
encoder = Encoder(
dropout_emb=0.1, dropout_posffn=0.1, dropout_attn=0.,
num_layers=num_enc_layers, enc_dim=enc_dim, num_heads=num_heads, dff=2048, tgt_len=max_seq_len
)
decoder = Decoder(
dropout_emb=0.1, dropout_posffn=0.1, dropout_attn=0.,
num_layers=num_dec_layers, dec_dim=enc_dim, num_heads=num_heads, dff=2048, tgt_len=max_seq_len,
tgt_vocab_size=vocab_size
)
model = Transformer(feature_extractor, encoder, decoder, enc_dim, vocab_size)
return model
if __name__ == "__main__":
if len(sys.argv) != 3:
print("Usage: python train.py <feature_extractor_type> <dataset_type>")
sys.exit(1)
feature_extractor_type = sys.argv[1]
dataset_type = sys.argv[2]
assert feature_extractor_type in ["linear", "resnet"]
assert dataset_type in ["lrs2", "librispeech"]
if dataset_type == "lrs2":
t_ph = "./spm/lrs2/1000_bpe.model"
audio_path_file = "./data/LRS2/train.paths"
text_file = "./data/LRS2/train.text"
lengths_file = "./data/LRS2/train.lengths"
elif dataset_type == "librispeech":
t_ph = "./spm/librispeech/1000_bpe.model"
audio_path_file = "./data/LibriSpeech/train-clean-100.paths"
text_file = "./data/LibriSpeech/train-clean-100.text"
lengths_file = "./data/LibriSpeech/train-clean-100.lengths"
else:
raise ValueError(f"Unsupported dataset type: {dataset_type}")
# define tokenizer
tokenizer = SubwordTokenizer(t_ph)
print(tokenizer)
# load data
with open(audio_path_file, 'r') as f:
audio_paths = f.read().splitlines()
with open(text_file, 'r') as f:
transcripts = f.read().splitlines()
with open(lengths_file, 'r') as f:
wav_lengths = f.read().splitlines()
wav_lengths = [float(length) for length in wav_lengths]
# create checkpoint directory
ckpt_dir = f"./.checkpoints_{feature_extractor_type}_{dataset_type}"
os.makedirs(ckpt_dir, exist_ok=True)
# define dataloader
batch_size = 64
batch_seconds = 512 # depends on your GPU memory
data_loader = get_dataloader(
audio_paths, transcripts, wav_lengths, tokenizer, batch_size, batch_seconds, shuffle=True
)
# define model
vocab = tokenizer.vocab
enc_dim = 256
num_enc_layers = 12
num_dec_layers = 6
model = init_model(vocab, enc_dim, num_enc_layers, num_dec_layers, feature_extractor_type)
print(model)
model.train()
# DataParallel for multi-gpu
if torch.cuda.device_count() > 1:
dp = True
model = nn.DataParallel(model)
else:
dp = False
if torch.cuda.is_available():
model.cuda()
# define optimizer and scheduler
max_lr = 4e-4
num_epoch = 50
num_warmup = 10000
pcb = num_warmup / (len(data_loader) * num_epoch) # percentage of warmup
optimizer = torch.optim.Adam(model.parameters(), lr=max_lr)
scheduler = torch.optim.lr_scheduler.OneCycleLR(
optimizer, max_lr=max_lr, steps_per_epoch=len(data_loader), epochs=num_epoch,
pct_start=pcb, anneal_strategy="cos",
)
# define loss criterion
criterion = nn.CrossEntropyLoss(ignore_index=-1, label_smoothing=0.1) # -1: ignore padding
# main loop
pbar = tqdm.tqdm(range(len(data_loader)), desc="Training")
for epoch in range(1, num_epoch + 1):
tot_loss = 0.
data_loader.dataset.shuffle()
for i, batch in enumerate(data_loader, start=1):
# get batch data
fbank_feat, feat_lens, ys_in_pad, ys_out_pad = batch
if torch.cuda.is_available():
fbank_feat = fbank_feat.cuda()
feat_lens = feat_lens.cuda()
ys_in_pad = ys_in_pad.cuda()
ys_out_pad = ys_out_pad.cuda()
# forward
logits = model(fbank_feat, feat_lens, ys_in_pad)
# calculate loss
logits = logits.view(-1, logits.size(-1))
ys_out_pad = ys_out_pad.view(-1).long()
loss = criterion(logits, ys_out_pad)
# backward
optimizer.zero_grad()
loss.backward()
optimizer.step()
scheduler.step()
# refresh progress bar
tot_loss += loss.item()
pbar.set_postfix({
"loss": f"{tot_loss / i:.2f}",
"epoch": f"{epoch}/{num_epoch}",
})
pbar.update(1)
pbar.reset()
print(f"Epoch: {epoch:02d}/{num_epoch:02d}, Loss: {tot_loss / len(data_loader):.2f}")
# save model
torch.save(
model.module.state_dict() if dp else model.state_dict(),
os.path.join(ckpt_dir, f"epoch_{epoch:03d}.pth")
)