-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsynthetic_data.py
167 lines (141 loc) · 5.48 KB
/
synthetic_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import argparse
import pickle as pkl
import networkx as nx
import numpy as np
from networkx.generators.random_graphs import random_powerlaw_tree
from graph_generator import kronecker_random_graph, grid_2d, \
P_peri ,P_hier, P_rand
KRONECKER_RAND = 'kr-rand'
KRONECKER_PERI = 'kr-peri'
KRONECKER_HIER = 'kr-hier'
GRID = 'grid'
PL_TREE = 'pl-tree'
B_TREE = 'balanced-tree'
ER = 'er'
BARABASI = 'barabasi'
CLIQUE = 'clique'
LINE = 'line'
all_graph_types = [KRONECKER_RAND,
KRONECKER_PERI,
KRONECKER_HIER,
GRID,
PL_TREE,
B_TREE,
ER,
BARABASI,
CLIQUE,
LINE]
INF_TIME_PROBA_FILE = 'inf_time_proba_matrix'
NODE2ID_FILE = 'node2id'
ID2NODE_FILE = 'id2node'
REWARD_TABLE_NAME = 'edge_reward_tables'
TIMES_FILE_SUFFIX = 'source2times'
SP_LEN_NAME = 'sp_len'
def extract_larges_CC(g):
nodes = max(nx.connected_components(g), key=len)
return g.subgraph(nodes)
def gen_kronecker(P, k=8, n_edges=512):
g = kronecker_random_graph(k, P, n_edges=n_edges, directed=False)
return extract_larges_CC(g)
def load_data_by_gtype(gtype, size_param_str):
g = nx.read_gpickle('data/{}/{}/graph.gpkl'.format(gtype, size_param_str))
try:
dir_tbl, inf_tbl = pkl.load(open('data/{}/{}/{}.pkl'.format(
gtype, size_param_str,
REWARD_TABLE_NAME), 'rb'))
except IOError:
dir_tbl, inf_tbl = None, None
try:
sp_len = np.load('data/{}/{}/{}.npz.npy'.format(
gtype, size_param_str,
SP_LEN_NAME))
except IOError:
sp_len = None
try:
time_probas = pkl.load(open('data/{}/{}/{}.pkl'.format(gtype, size_param_str,
INF_TIME_PROBA_FILE), 'rb'))
except IOError:
time_probas = None
try:
node2id = pkl.load(open('data/{}/{}/{}.pkl'.format(gtype, size_param_str,
NODE2ID_FILE), 'rb'))
id2node = pkl.load(open('data/{}/{}/{}.pkl'.format(gtype, size_param_str,
ID2NODE_FILE), 'rb'))
except IOError:
node2id, id2node = None, None
return g, time_probas, dir_tbl, inf_tbl, sp_len, node2id, id2node
def main():
import os
p = 0.7
delta = 1
parser = argparse.ArgumentParser()
parser.add_argument('-t', '--type', choices=all_graph_types,
help='graph type')
parser.add_argument('-s', '--size', type=int,
default=0,
help="size of graph")
parser.add_argument('-e', '--size_exponent', type=int,
default=1,
help="exponent of the size")
parser.add_argument('-b', '--exponent_base', type=int,
default=10,
help="base of the size exponent")
parser.add_argument('-n', '--n_rounds', type=int,
default=100,
help="number of simulated cascades")
args = parser.parse_args()
gtype = args.type
if args.size:
size = args.size
output_dir = 'data/{}/{}'.format(gtype, size)
else:
size = args.exponent_base ** args.size_exponent
output_dir = 'data/{}/{}-{}'.format(gtype, args.exponent_base,
args.size_exponent)
if gtype == KRONECKER_HIER:
g = gen_kronecker(P=P_hier, k=args.size_exponent, n_edges=2**args.size_exponent * 3)
elif gtype == KRONECKER_PERI:
g = gen_kronecker(P=P_peri, k=args.size_exponent, n_edges=2**args.size_exponent * 3)
elif gtype == KRONECKER_RAND:
g = gen_kronecker(P=P_rand, k=args.size_exponent, n_edges=2**args.size_exponent * 3)
elif gtype == PL_TREE:
p = 0.88
g = random_powerlaw_tree(size, tries=999999)
elif gtype == B_TREE:
g = nx.balanced_tree(args.exponent_base, args.size_exponent-1)
elif gtype == ER:
g = extract_larges_CC(nx.fast_gnp_random_graph(size, 0.1))
elif gtype == BARABASI:
g = extract_larges_CC(nx.barabasi_albert_graph(size, 5))
elif gtype == GRID:
g = grid_2d(int(np.sqrt(size)))
elif gtype == CLIQUE:
g = nx.complete_graph(size)
elif gtype == LINE:
g = nx.path_graph(size)
else:
raise ValueError('unsupported graph type {}'.format(gtype))
g.remove_edges_from(g.selfloop_edges())
print('|V|={}, |E|={}'.format(g.number_of_nodes(), g.number_of_edges()))
if gtype == GRID:
mapping = {(i, j): int(np.sqrt(size)) * i + j for i, j in g.nodes_iter()}
g = nx.relabel_nodes(g, mapping)
else:
g = nx.convert_node_labels_to_integers(g)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
print('graph type: {}'.format(gtype))
# g = add_p_and_delta(g, p, delta)
output_path = '{}/graph.graphml'.format(output_dir, gtype)
print('saving to {}'.format(output_path))
nx.write_graphml(g, output_path)
nx.write_gpickle(g, '{}/graph.gpkl'.format(output_dir, gtype))
if False:
pkl.dump(time_probas,
open('{}/{}.pkl'.format(output_dir, INF_TIME_PROBA_FILE), 'wb'))
pkl.dump(node2id,
open('{}/{}.pkl'.format(output_dir, NODE2ID_FILE), 'wb'))
pkl.dump(id2node,
open('{}/{}.pkl'.format(output_dir, ID2NODE_FILE), 'wb'))
if __name__ == "__main__":
main()