-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathdata_helper.py
480 lines (355 loc) · 15.7 KB
/
data_helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
# -*- coding:utf-8 -*-
# from numpy.random import shuffle as np_shuffle
# from enum import _EnumDict
import numpy as np
import re
from collections import defaultdict
import random
import datetime
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import roc_auc_score, f1_score, accuracy_score
import copy
class SignedGraph(object):
def __init__(self, fpath, is_undiredted=True):
self.G_pos = None
self.G_neg = None
self.edge_pos = None
self.edge_neg = None
self.node_all = set()
self.read_signed_graph(fpath, is_undiredted)
def read_signed_graph(self, fpath, is_undirected=False):
'''
:param fpath:
:param is_undirected: add bidirectional edge
:return: G_pos, G_neg
'''
G_pos = defaultdict(set)
G_neg = defaultdict(set)
edge_pos = []
edge_neg = []
node_all = set()
with open(fpath) as f:
for line in f:
if len(line) > 0 and line[0] == '#':
continue
else:
res = re.split(r'\s+', line.strip())
source_node, target_node, sign = map(int, res)
node_all.add(source_node)
node_all.add(target_node)
if sign == 1:
if target_node not in G_pos[source_node]:#remove repeated edge
G_pos[source_node].add(target_node)
edge_pos.append((source_node, target_node, sign))
if is_undirected:
if source_node not in G_pos[target_node]:
G_pos[target_node].add(source_node)
edge_pos.append((target_node, source_node, sign))
elif sign == -1:
if target_node not in G_neg[source_node]:
G_neg[source_node].add(target_node)
edge_neg.append((source_node, target_node, sign))
if is_undirected:
if source_node not in G_neg[target_node]:
G_neg[target_node].add(source_node)
edge_neg.append((target_node, source_node, sign))
else:
print('unknown sign:', sign)
exit(-1)
self.G_pos = G_pos
self.G_neg = G_neg
self.edge_pos = edge_pos
self.edge_neg = edge_neg
self.node_all = node_all
return G_pos, G_neg
def signet_read_edge_info(fpath):
edge_list = []
with open(fpath) as f:
for line in f:
if line[0] != '#':
s, t, sign = map(int, re.split(r'\s+', line.strip()))
edge_list.append([s, t, sign])
return edge_list
def signet_save_edge_info(edge_list, fpath):
with open(fpath, 'w') as f:
for edge in edge_list:
s = ' '.join(map(str, edge)) + '\n'
f.write(s)
def BESIDE_trans_emb_to_xy(aux_parameter, edge_tuples, mode_choose):
'''
from emb and parameters to feature
return [x,y]
'''
X = []
Y = []
epoch_emb, wi, wj, bedge, sta_w1_source, sta_w1_target, sta_b1_source, sta_b1_target, sta_w_for_score, sta_b_for_score,sta_w_for_score_combined, sta_b_for_score_combined = aux_parameter
for edge in edge_tuples:
# e.g. [1,3,-1]
y = edge[2] if edge[2] == 1 else 0 # 1->1,-1->0
emb_1 = np.array(epoch_emb[edge[0]])
emb_2 = np.array(epoch_emb[edge[1]])
triad_emb_edge = np.matmul(emb_1, wi) + np.matmul(emb_2, wj) + bedge
sta_source_fea_emb = np.matmul(emb_1, sta_w1_source) + sta_b1_source
sta_target_fea_emb = np.matmul(emb_2, sta_w1_target) + sta_b1_target
status_fea_vec = sta_source_fea_emb - sta_target_fea_emb
if mode_choose == 'tri_sta':
final_fea = np.zeros(shape=len(triad_emb_edge) + len(status_fea_vec))
final_fea[:len(triad_emb_edge)] = triad_emb_edge
final_fea[len(triad_emb_edge):len(triad_emb_edge) + len(status_fea_vec)] = status_fea_vec
elif mode_choose == 'tri':
final_fea = triad_emb_edge
else:
print('unknown mode_choose:{}', mode_choose)
exit()
X.append(final_fea)
Y.append(y)
return np.array(X), np.array(Y)
def BESIDE_check_link_prediction_task(dataset_train_fpath, dataset_test_fpath, sub_log_fpath, epoch_no, aux_parameter,
mode_choose, extra_info=None):
'''
different mode_choose -> report performance of different tasks
'''
edge_method = '(xiWi+xjWj+b)' # 'l2_weight'#'l1_weight'# 'hadamard' #
edge_train = signet_read_edge_info(dataset_train_fpath)
edge_test = signet_read_edge_info(dataset_test_fpath)
if mode_choose == 'sta': # compare directly
epoch_emb, Wi, Wj, bedge, sta_w1_source, sta_w1_target, sta_b1_source, sta_b1_target, sta_w_for_score, sta_b_for_score,sta_w_for_score_combined, sta_b_for_score_combined = aux_parameter
def get_source_score(node):
tmp_emb = epoch_emb[node]
return np.matmul(np.matmul(tmp_emb,sta_w1_source) + sta_b1_source,sta_w_for_score) + sta_b_for_score
def get_target_score(node):
tmp_emb = epoch_emb[node]
return np.matmul(np.matmul(tmp_emb,sta_w1_target) + sta_b1_target,sta_w_for_score) + sta_b_for_score
correct_num = 0
total_num = len(edge_test)
equal_num = 0
for edge in edge_test:
u, v, sign = edge
sta_source_score_u = get_source_score(u)[0]
sta_target_score_v = get_target_score(v)[0]
if (sta_source_score_u < sta_target_score_v and sign == 1) or (sta_source_score_u > sta_target_score_v and sign == -1):
correct_num += 1
if sta_source_score_u == sta_target_score_v:
equal_num += 1
sta_cmp_acc = 1.0 * correct_num / total_num
print(sub_log_fpath + '\n{}:test epoch {}: acc {:.4f}({}/{}|equ={}) ({})\n'.format(
datetime.datetime.now().isoformat(), epoch_no, sta_cmp_acc,correct_num,total_num,equal_num ,edge_method))
if extra_info:
print('extra_info:', extra_info)
print('writing result to', sub_log_fpath)
with open(sub_log_fpath, 'a') as f:
s = sub_log_fpath + '\n{}:test epoch {}: acc {:.4f} ({})\n'.format(
datetime.datetime.now().isoformat(), epoch_no, sta_cmp_acc, edge_method)
if extra_info:
s += '{}\n'.format(extra_info)
f.write(s)
else: #tri and tri_sta
edge_train_emb_X, edge_train_emb_Y = BESIDE_trans_emb_to_xy(aux_parameter, edge_train, mode_choose)
edge_test_emb_X, edge_test_emb_Y = BESIDE_trans_emb_to_xy(aux_parameter, edge_test, mode_choose)
#train LR and test
lr = LogisticRegression()
lr.fit(edge_train_emb_X, edge_train_emb_Y)
test_y_score = lr.predict_proba(edge_test_emb_X)[:, 1]
test_y_pred = lr.predict(edge_test_emb_X)
lp_auc_score = roc_auc_score(edge_test_emb_Y, test_y_score, average='macro')
lp_f1_score_macro = f1_score(edge_test_emb_Y, test_y_pred, average='macro')
lp_f1_score_micro = f1_score(edge_test_emb_Y, test_y_pred, average='micro')
lp_acc = accuracy_score(edge_test_emb_Y, test_y_pred)
print('{}:test epoch {}: auc {:.4f} f1_macro {:.4f} f1_micro {:.4f} acc {:.4f} ({})\n'.format(
datetime.datetime.now().isoformat(), epoch_no, lp_auc_score, lp_f1_score_macro, lp_f1_score_micro, lp_acc,
edge_method))
if extra_info:
print('extra_info:', extra_info)
print('writing result to', sub_log_fpath)
with open(sub_log_fpath, 'a') as f:
s = sub_log_fpath + '\n{}:test epoch {}: auc {:.4f} f1_macro {:.4f} f1_micro {:.4f} acc {:.4f} ({})\n'.format(
datetime.datetime.now().isoformat(), epoch_no, lp_auc_score, lp_f1_score_macro, lp_f1_score_micro,
lp_acc, edge_method)
if extra_info:
s += '{}\n'.format(extra_info)
f.write(s)
def BESIDE_sta_gen_batch(batch_size, edge_train, node_train_set, G_pos_train_ori, G_neg_train_ori):
'''
sample for bridge edges
:return: (i,j,true_sign_ij)
'''
G_pos_train = copy.deepcopy(G_pos_train_ori)
G_neg_train = copy.deepcopy(G_neg_train_ori)
node_train_list = list(node_train_set)
np.random.shuffle(node_train_list)
edge_train_list = list(edge_train)
np.random.shuffle(edge_train_list)
for node, neis in G_pos_train_ori.items():
if node in neis:
G_pos_train[node].remove(node)
for node, neis in G_neg_train_ori.items():
if node in neis:
G_neg_train[node].remove(node)
bridge_edge_num = 0
G_pos_train_rev = defaultdict(set)
G_neg_train_rev = defaultdict(set)
for cur_node, neis in G_pos_train.items():
for nei in neis:
G_pos_train_rev[nei].add(cur_node)
for cur_node, neis in G_neg_train.items():
for nei in neis:
G_neg_train_rev[nei].add(cur_node)
def remove_self_loop(G_dict):
G_dict_copy = copy.deepcopy(G_dict)
for node,neis in G_dict_copy.items():
if node in neis:
G_dict[node].remove(node)
return G_dict
G_pos_train = remove_self_loop(G_pos_train)
G_neg_train = remove_self_loop(G_neg_train)
G_pos_train_rev = remove_self_loop(G_pos_train_rev)
G_neg_train_rev = remove_self_loop(G_neg_train_rev)
cur_batch = []
for edge_idx, edge in enumerate(edge_train_list):
i, j, sign = edge
true_sign = 1 if sign == 1 else 0
if i == j:
continue
bak_nodes_i = G_pos_train[i].union(G_neg_train[i]).union(G_pos_train_rev[i]).union(G_neg_train_rev[i])
bak_nodes_j = G_pos_train[j].union(G_neg_train[j]).union(G_pos_train_rev[j]).union(G_neg_train_rev[j])
bak_k_nodes = bak_nodes_i.intersection(bak_nodes_j)
if not bak_k_nodes: # `bridge' edge
bridge_edge_num += 1
cur_batch.append([i, j, true_sign])
if len(cur_batch) == batch_size:
yield np.array(cur_batch)
cur_batch = []
if len(cur_batch) > 0:
yield np.array(cur_batch)
# print('status:bridge_edge_num:{}'.format(bridge_edge_num))
def BESIDE_tri_gen_batch(batch_size, edge_train, node_train_set, G_pos_train_ori, G_neg_train_ori,
max_one_edge_train_samples=16):
'''
sample for common edges (with triads)
:return: (i,j,i,k,j,k,sign_ij,sign_ik,sign_jk)
'''
G_pos_train = copy.deepcopy(G_pos_train_ori)
G_neg_train = copy.deepcopy(G_neg_train_ori)
node_train_list = list(node_train_set)
np.random.shuffle(node_train_list)
edge_train_list = list(edge_train)
np.random.shuffle(edge_train_list)
for node, neis in G_pos_train_ori.items():
if node in neis:
G_pos_train[node].remove(node)
for node, neis in G_neg_train_ori.items():
if node in neis:
G_neg_train[node].remove(node)
G_pos_train_rev = defaultdict(set)
G_neg_train_rev = defaultdict(set)
for cur_node, neis in G_pos_train.items():
for nei in neis:
G_pos_train_rev[nei].add(cur_node)
for cur_node, neis in G_neg_train.items():
for nei in neis:
G_neg_train_rev[nei].add(cur_node)
def remove_self_loop(G_dict):
G_dict_copy = copy.deepcopy(G_dict)
for node,neis in G_dict_copy.items():
if node in neis:
G_dict[node].remove(node)
return G_dict
G_pos_train = remove_self_loop(G_pos_train)
G_neg_train = remove_self_loop(G_neg_train)
G_pos_train_rev = remove_self_loop(G_pos_train_rev)
G_neg_train_rev = remove_self_loop(G_neg_train_rev)
return_batch = []
sampled_node_set = set()
actual_train_node_set = set()
for edge_idx, edge in enumerate(edge_train_list):
actual_train_node_set.add(edge[0])
actual_train_node_set.add(edge[1])
cur_batch = []
i, j, sign_ij = edge
if sign_ij == -1:
sign_ij = 0
else:
sign_ij = 1
if i == j:
continue
bak_nodes_i = G_pos_train[i].union(G_neg_train[i]).union(G_pos_train_rev[i]).union(G_neg_train_rev[i])
bak_nodes_j = G_pos_train[j].union(G_neg_train[j]).union(G_pos_train_rev[j]).union(G_neg_train_rev[j])
bak_k_nodes = bak_nodes_i.intersection(bak_nodes_j)
if not bak_k_nodes: # edges which do not have triads
continue
if len(bak_k_nodes) > max_one_edge_train_samples: # in case there are too many triads
bak_k_nodes = random.sample(list(bak_k_nodes), max_one_edge_train_samples)
else:
bak_k_nodes = list(bak_k_nodes)
for k in bak_k_nodes:
tmp_ik = (i, k)
tmp_jk = (j, k)
sign_ik = 1
sign_jk = 1
if k in G_pos_train[i]:
pass
elif k in G_neg_train[i]:
sign_ik = 0
elif k in G_pos_train_rev[i]:
tmp_ik = (k, i)
elif k in G_neg_train_rev[i]:
tmp_ik = (k, i)
sign_jk = 0
if k in G_pos_train[j]:
pass
elif k in G_neg_train[j]:
sign_jk = 0
elif k in G_pos_train_rev[j]:
tmp_jk = (k, j)
elif k in G_neg_train_rev[j]:
tmp_jk = (k, j)
sign_jk = 0
cur_batch.append([i, j, tmp_ik[0], tmp_ik[1], tmp_jk[0], tmp_jk[1], sign_ij, sign_ik, sign_jk])
for one_strip in cur_batch:
sampled_node_set.add(one_strip[0])
sampled_node_set.add(one_strip[1])
if len(return_batch) == batch_size:
yield np.array(return_batch)
return_batch = []
return_batch.append(one_strip)
if len(return_batch) > 0:
yield np.array(return_batch)
def signet_read_node_info(dataset_nodes_fpath):
node_set = set(np.loadtxt(dataset_nodes_fpath, dtype=np.int32))
return node_set
def signet_read_train_edge(dataset_train_fpath, dataset_nodes_fpath):
edge_train = signet_read_edge_info(dataset_train_fpath)
node_all_set = signet_read_node_info(dataset_nodes_fpath)
G_pos_train = defaultdict(set)
G_neg_train = defaultdict(set)
node_train_set = set()
for edge in edge_train:
source_node, target_node, sign = edge
if sign == 1:
G_pos_train[source_node].add(target_node)
elif sign == -1:
G_neg_train[source_node].add(target_node)
else:
print('unknown sign:', sign)
exit(-1)
node_train_set.add(source_node)
node_num = max(node_all_set) + 1 # in case the embedding lookup index out of range
return node_train_set, G_pos_train, G_neg_train, node_num
def stacmp_read_train_edge(dataset_train_fpath, dataset_nodes_fpath):
edge_train = signet_read_edge_info(dataset_train_fpath)
node_all_set = signet_read_node_info(dataset_nodes_fpath)
G_pos_train = defaultdict(set)
G_neg_train = defaultdict(set)
node_train_set = set()
for edge in edge_train:
source_node, target_node, sign = edge
if sign == 1:
G_pos_train[source_node].add(target_node)
elif sign == -1:
G_neg_train[source_node].add(target_node)
else:
print('unknown sign:', sign)
exit(-1)
node_train_set.add(source_node)
node_num = max(node_all_set) + 1
return node_train_set, G_pos_train, G_neg_train, node_num