A semantic search engine to help users discover movies and TV shows using natural language queries. CineFinder uses vector embeddings and FAISS indexing to provide fast, intelligent, and context-aware recommendations.
- 🔎 Semantic Search with vector similarity using FAISS
- 🧠 Embeddings generated from movie titles and descriptions
- ⚡ Fast retrieval from a dataset of 6K+ movie entries
- 📊 Interactive Jupyter Notebook for exploration and testing
CineFinder/
├── Movie_Wiki_Dataset.ipynb # Notebook to clean data, embed, and search
├── movie_data.pkl # Pickled movie metadata
├── movie_faiss.index # FAISS vector index for fast search
├── requirements.txt # Python dependencies
git clone https://github.com/ShouryaAswal/CineFinder.git
cd CineFinder
pip install -r requirements.txt
jupyter notebook Movie_Wiki_Dataset.ipynb
💡 Use the notebook to embed text, build the FAISS index, and run semantic queries like:
search("time travel thriller with a twist ending")
- Python & Jupyter Notebook
- FAISS for vector similarity search
- Pickle for data serialization
- Scikit-learn / Transformers (optional for embeddings)
For questions or collaborations:
🎥 CineFinder is an experimental semantic search engine — perfect for exploring how AI can enhance content discovery in entertainment platforms.