Skip to content

Commit 829d7de

Browse files
committed
markdown references
1 parent cdf1c1f commit 829d7de

File tree

1 file changed

+24
-26
lines changed

1 file changed

+24
-26
lines changed

Readme.md

+24-26
Original file line numberDiff line numberDiff line change
@@ -20,20 +20,20 @@ Iterative image reconstruction (IIR) methods frequently require regularisation t
2020

2121
### Single-channel (scalar)
2222

23-
1. Rudin-Osher-Fatemi (ROF) Total Variation (explicit PDE minimisation scheme) **2D/3D CPU/GPU + CuPy** (Ref. *1*)
24-
2. Fast-Gradient-Projection (FGP) Total Variation **2D/3D CPU/GPU** (Ref. *2*)
25-
3. Split-Bregman (SB) Total Variation **2D/3D CPU/GPU** (Ref. *5*)
26-
4. Primal-Dual (PD) Total Variation **2D/3D CPU/GPU + CuPy** (Ref. *13*)
27-
5. Total Generalised Variation (TGV) model for higher-order regularisation **2D/3D CPU/GPU** (Ref. *6,13*)
28-
6. Linear and nonlinear diffusion (explicit PDE minimisation scheme) **2D/3D CPU/GPU** (Ref. *8*)
29-
7. Anisotropic Fourth-Order Diffusion (explicit PDE minimisation) **2D/3D CPU/GPU** (Ref. *9*)
30-
8. A joint ROF-LLT (Lysaker-Lundervold-Tai) model for higher-order regularisation **2D/3D CPU/GPU** (Ref. *10,11*)
31-
9. Nonlocal Total Variation regularisation (GS fixed point iteration) **2D CPU/GPU** (Ref. *12*)
23+
1. Rudin-Osher-Fatemi (ROF) Total Variation (explicit PDE minimisation scheme) **2D/3D CPU/GPU + CuPy**[^1]
24+
2. Fast-Gradient-Projection (FGP) Total Variation **2D/3D CPU/GPU**[^2]
25+
3. Split-Bregman (SB) Total Variation **2D/3D CPU/GPU**[^5]
26+
4. Primal-Dual (PD) Total Variation **2D/3D CPU/GPU + CuPy**[^13]
27+
5. Total Generalised Variation (TGV) model for higher-order regularisation **2D/3D CPU/GPU**[^6][^13]
28+
6. Linear and nonlinear diffusion (explicit PDE minimisation scheme) **2D/3D CPU/GPU**[^8]
29+
7. Anisotropic Fourth-Order Diffusion (explicit PDE minimisation) **2D/3D CPU/GPU**[^9]
30+
8. A joint ROF-LLT (Lysaker-Lundervold-Tai) model for higher-order regularisation **2D/3D CPU/GPU**[^10][^11]
31+
9. Nonlocal Total Variation regularisation (GS fixed point iteration) **2D CPU/GPU**[^12]
3232

3333
### Multi-channel (vectorial)
3434

35-
1. Fast-Gradient-Projection (FGP) Directional Total Variation **2D/3D CPU/GPU** (Ref. *3,4,2*)
36-
2. Total Nuclear Variation (TNV) penalty **2D+channels CPU** (Ref. *7*)
35+
1. Fast-Gradient-Projection (FGP) Directional Total Variation **2D/3D CPU/GPU**[^3][^4][^2]
36+
2. Total Nuclear Variation (TNV) penalty **2D+channels CPU**[^7]
3737

3838
## Installation
3939

@@ -59,21 +59,19 @@ Once installed please see [Demos](./demos/demo_gpu_regularisers3D_CuPy.py). Plea
5959

6060
## References
6161

62-
### Implemented methods
63-
64-
1. [Rudin, L.I., Osher, S. and Fatemi, E., 1992. Nonlinear total variation based noise removal algorithms. Physica D: nonlinear phenomena, 60(1-4)](https://www.sciencedirect.com/science/article/pii/016727899290242F)
65-
2. [Beck, A. and Teboulle, M., 2009. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Transactions on Image Processing, 18(11)](https://doi.org/10.1109/TIP.2009.2028250)
66-
3. [Ehrhardt, M.J. and Betcke, M.M., 2016. Multicontrast MRI reconstruction with structure-guided total variation. SIAM Journal on Imaging Sciences, 9(3)](https://doi.org/10.1137/15M1047325)
67-
4. [Kazantsev, D., Jørgensen, J.S., Andersen, M., Lionheart, W.R., Lee, P.D. and Withers, P.J., 2018. Joint image reconstruction method with correlative multi-channel prior for X-ray spectral computed tomography. Inverse Problems, 34(6)](https://doi.org/10.1088/1361-6420/aaba86) **Results can be reproduced using the following** [SOFTWARE](https://github.com/dkazanc/multi-channel-X-ray-CT)
68-
5. [Goldstein, T. and Osher, S., 2009. The split Bregman method for L1-regularized problems. SIAM journal on imaging sciences, 2(2)](https://doi.org/10.1137/080725891)
69-
6. [Bredies, K., Kunisch, K. and Pock, T., 2010. Total generalized variation. SIAM Journal on Imaging Sciences, 3(3)](https://doi.org/10.1137/090769521)
70-
7. [Duran, J., Moeller, M., Sbert, C. and Cremers, D., 2016. Collaborative total variation: a general framework for vectorial TV models. SIAM Journal on Imaging Sciences, 9(1)](https://doi.org/10.1137/15M102873X)
71-
8. [Black, M.J., Sapiro, G., Marimont, D.H. and Heeger, D., 1998. Robust anisotropic diffusion. IEEE Transactions on image processing, 7(3)](https://doi.org/10.1109/83.661192)
72-
9. [Hajiaboli, M.R., 2011. An anisotropic fourth-order diffusion filter for image noise removal. International Journal of Computer Vision, 92(2)](https://doi.org/10.1007/s11263-010-0330-1)
73-
10. [Lysaker, M., Lundervold, A. and Tai, X.C., 2003. Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Transactions on image processing, 12(12)](https://doi.org/10.1109/TIP.2003.819229)
74-
11. [Kazantsev, D., Guo, E., Phillion, A.B., Withers, P.J. and Lee, P.D., 2017. Model-based iterative reconstruction using higher-order regularization of dynamic synchrotron data. Measurement Science and Technology, 28(9)](https://doi.org/10.1088/1361-6501/aa7fa8)
75-
12. [Abderrahim E., Lezoray O. and Bougleux S. 2008. Nonlocal discrete regularization on weighted graphs: a framework for image and manifold processing. IEEE Trans. Image Processing 17(7), pp. 1047-1060.](https://ieeexplore.ieee.org/document/4526700)
76-
13. [Chambolle, A. and Pock, T., 2010. A first-order primal-dual algorithm for convex problems with applications to imaging. Journal of mathematical imaging and vision 40(1)](https://doi.org/10.1007/s10851-010-0251-1)
62+
[^1]: [Rudin, L.I., Osher, S. and Fatemi, E., 1992. Nonlinear total variation based noise removal algorithms. Physica D: nonlinear phenomena, 60(1-4)](https://www.sciencedirect.com/science/article/pii/016727899290242F)
63+
[^2]: [Beck, A. and Teboulle, M., 2009. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Transactions on Image Processing, 18(11)](https://doi.org/10.1109/TIP.2009.2028250)
64+
[^3]: [Ehrhardt, M.J. and Betcke, M.M., 2016. Multicontrast MRI reconstruction with structure-guided total variation. SIAM Journal on Imaging Sciences, 9(3)](https://doi.org/10.1137/15M1047325)
65+
[^4]: [Kazantsev, D., Jørgensen, J.S., Andersen, M., Lionheart, W.R., Lee, P.D. and Withers, P.J., 2018. Joint image reconstruction method with correlative multi-channel prior for X-ray spectral computed tomography. Inverse Problems, 34(6)](https://doi.org/10.1088/1361-6420/aaba86) **Results can be reproduced using the following** [SOFTWARE](https://github.com/dkazanc/multi-channel-X-ray-CT)
66+
[^5]: [Goldstein, T. and Osher, S., 2009. The split Bregman method for L1-regularized problems. SIAM journal on imaging sciences, 2(2)](https://doi.org/10.1137/080725891)
67+
[^6]: [Bredies, K., Kunisch, K. and Pock, T., 2010. Total generalized variation. SIAM Journal on Imaging Sciences, 3(3)](https://doi.org/10.1137/090769521)
68+
[^7]: [Duran, J., Moeller, M., Sbert, C. and Cremers, D., 2016. Collaborative total variation: a general framework for vectorial TV models. SIAM Journal on Imaging Sciences, 9(1)](https://doi.org/10.1137/15M102873X)
69+
[^8]: [Black, M.J., Sapiro, G., Marimont, D.H. and Heeger, D., 1998. Robust anisotropic diffusion. IEEE Transactions on image processing, 7(3)](https://doi.org/10.1109/83.661192)
70+
[^9]: [Hajiaboli, M.R., 2011. An anisotropic fourth-order diffusion filter for image noise removal. International Journal of Computer Vision, 92(2)](https://doi.org/10.1007/s11263-010-0330-1)
71+
[^10]: [Lysaker, M., Lundervold, A. and Tai, X.C., 2003. Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Transactions on image processing, 12(12)](https://doi.org/10.1109/TIP.2003.819229)
72+
[^11]: [Kazantsev, D., Guo, E., Phillion, A.B., Withers, P.J. and Lee, P.D., 2017. Model-based iterative reconstruction using higher-order regularization of dynamic synchrotron data. Measurement Science and Technology, 28(9)](https://doi.org/10.1088/1361-6501/aa7fa8)
73+
[^12]: [Abderrahim E., Lezoray O. and Bougleux S. 2008. Nonlocal discrete regularization on weighted graphs: a framework for image and manifold processing. IEEE Trans. Image Processing 17(7), pp. 1047-1060.](https://ieeexplore.ieee.org/document/4526700)
74+
[^13]: [Chambolle, A. and Pock, T., 2010. A first-order primal-dual algorithm for convex problems with applications to imaging. Journal of mathematical imaging and vision 40(1)](https://doi.org/10.1007/s10851-010-0251-1)
7775

7876
### Software (please cite if used)
7977

0 commit comments

Comments
 (0)