Skip to content

AI-Driven CRM Platform: Real-Time Collaboration, Strong Data Security & Scalable Cloud Architecture

Notifications You must be signed in to change notification settings

brettdavies/AutoCRM

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

AutoCRM Technical Documentation

Enterprise-Grade CRM Platform
Combining modern web architecture with production-ready patterns for scalable customer relationship management

Project Overview

AutoCRM demonstrates full-stack technical mastery through its implementation of complex business requirements while maintaining strict quality controls. The system prioritizes type safety, real-time collaboration, and security without compromising developer velocity.

Key Architectural Achievements:

  1. End-to-end TypeScript integration with database schema synchronization
  2. Real-time data layer powered by Supabase subscriptions
  3. Granular RBAC implementation using PostgreSQL RLS
  4. Optimized rendering through memoization and virtualized lists
graph TD
    A[Type-Safe UI] --> B[Validated API Layer]
    B --> C[Real-Time Database]
    C --> D[Automated Security Policies]
    D --> E[Observable Runtime Behavior]
Loading

Technical Stack

Purpose-Built Technology Selection
Each layer was chosen to maximize type safety while leveraging modern web capabilities. The stack balances developer experience with production operational requirements.

Core Technologies

Layer Components Rationale
UI React 18, shadcn/ui Component-driven architecture with accessible primitives
State React Query, Zustand Optimistic updates with atomic state transitions
Styling Tailwind CSS Utility-first CSS with design system enforcement
Backend Supabase Full utilization of Auth, RLS, and Realtime features
CI/CD GitHub Actions Automated quality gates and deployment orchestration

Infrastructure Design

Secure by Default Architecture
The system leverages Supabase's integrated services while enforcing strict isolation between application layers:

// Typed Supabase client initialization
export const supabase = createClient<Database>(
  import.meta.env.VITE_SUPABASE_URL,
  import.meta.env.VITE_SUPABASE_ANON_KEY,
  {
    auth: { persistSession: true },
    global: { headers: { 'X-Client-Info': APP_VERSION } }
  }
);

Core Architectural Principles

Foundational Patterns Enabling Scalability
The architecture employs several defensive patterns to ensure maintainability as complexity grows.

1. Type-Driven Development

End-to-End Type Safety
TypeScript generics and Zod validation create a robust type corridor from database to UI components:

sequenceDiagram
    Database->>Type Generator: Schema Export
    Type Generator->>API Layer: Typed Clients
    API Layer->>UI Components: Props Validation
    UI Components->>State Management: Action Types
Loading

2. Real-Time Synchronization

Live Data Updates
Supabase's Postgres changes capture powers real-time UI updates across multiple client types:

// Team changes subscription
const subscribeToTeam = (teamId: string) => 
  supabase.channel('team:'+teamId)
    .on('postgres_changes', {
      event: '*',
      schema: 'public',
      table: 'teams',
      filter: `id=eq.${teamId}`
    }, handleChange)
    .subscribe();

3. Security Model

Defense-in-Depth Authorization
Row-level security policies complement frontend permission checks for redundant validation:

CREATE POLICY team_member_access ON teams
USING (
  EXISTS (
    SELECT 1 FROM team_members
    WHERE team_id = teams.id
    AND user_id = auth.uid()
  )
);

Feature Deep Dives

Complex Business Logic Implementation
Features demonstrate an ability to translate real-world CRM requirements into maintainable code while handling edge cases.

1. Team Management System

Enterprise-Grade Team Operations
Supports bulk operations with safety mechanisms for large-scale organizational changes:

graph TD
    A[CSV Upload] --> B[Validation Engine]
    B --> C[Batch Processing]
    C --> D[Rate-Limited Supabase Calls]
    D --> E[Real-Time UI Updates]
Loading

Implementation Highlights:

// Batched mutation handler
const processBatch = async (rows: TeamMemberRow[]) => {
  const batchPromises = rows.map(row => 
    supabase.from('team_members').upsert(transformRow(row))
  );
  
  await Promise.all(batchPromises);
  await new Promise(r => setTimeout(r, 1000)); // Rate limiting
};

2. Ticket Conversation System

Real-Time Collaboration Engine
Implements message threading with security validation and performance optimizations:

graph LR
    A[MessageInput] --> B[Type-Safe Validation]
    B --> C[Optimistic UI Update]
    C --> D[Supabase Insert]
    D --> E[Realtime Broadcast]
Loading

Security Implementation:

const ConversationMessage = memo(({ message }) => {
  const { session } = useAuth();
  const isOwner = session.user.id === message.sender_id;
  
  return (
    <div className={isOwner ? 'owner-message' : 'other-message'}>
      {/* Message content */}
    </div>
  );
});

Performance Optimization

Systematic Approach to Efficiency
Multiple layers of optimization ensure smooth operation with large datasets.

1. Rendering Optimizations

Virtualized Lists for Large Datasets
Maintains 60 FPS with 10,000+ item lists through windowing:

const VirtualizedTeamList = () => (
  <FixedSizeList
    height={600}
    width="100%"
    itemSize={65}
    itemCount={teams.length}
  >
    {({ index, style }) => (
      <TeamItem {...teams[index]} style={style} />
    )}
  </FixedSizeList>
);

2. Data Fetching Strategy

Intelligent Caching Layer
React Query configuration balances freshness and performance:

new QueryClient({
  defaultOptions: {
    queries: {
      staleTime: 5 * 60 * 1000,
      retry: (failureCount, error) => 
        error instanceof CriticalError ? false : failureCount < 2
    }
  }
});

Security Implementation

Multi-Layered Defense Strategy
Security spans from database to UI with redundant checks.

1. Authentication Flow

Session Validation Pattern
Cross-layer session verification prevents privilege escalation:

// Server-side edge function validation
export const requireSession = async (context) => {
  const session = await getSession(context);
  if (!session) throw new AuthError('Unauthenticated');
  return session;
};

2. Data Access Control

Hierarchical Permission System
Combines Supabase RLS with application-level checks:

CREATE POLICY team_lead_access ON team_members
FOR UPDATE USING (
  auth.uid() = user_id
  OR EXISTS (
    SELECT 1 FROM team_members
    WHERE team_id = team_members.team_id
    AND role = 'lead'
    AND user_id = auth.uid()
  )
);

Operational Excellence

Production-Ready Practices
The system implements observability patterns critical for enterprise deployment.

Monitoring Setup

Comprehensive Metric Collection
Key performance indicators tracked across stack layers:

Metric Collection Point Alert Threshold
API Latency Supabase Logs P95 > 500ms
UI Render React Profiler >200ms Mount
Cache Ratio React Query Hit Rate < 80%

Error Tracking

Centralized Exception Handling
Structured logging with error context capture:

logger.error('Team update failed', { 
  error: error.message,
  teamId,
  userId: session.user.id,
  stack: error.stack 
});

Documentation System

Architecture Decision Records (ADR)

Key technical decisions are documented as ADRs:

Full list in proj_docs/adr/ directory


Roadmap & Evolution

Strategic Technical Direction
Planned improvements focus on scaling and maintainability:

  1. Real-Time Analytics Pipeline

    • Supabase → BigQuery streaming
    • Looker Studio integration
  2. Advanced Type Safety

    // Proposed type-safe SQL wrapper
    const query = sql<Team>`SELECT * FROM teams WHERE id = ${teamId}`;
    const result = await supabase.raw(query);
  3. Micro-Frontend Architecture
    Module federation for independent team deployments

Risk Management

Risk Area Mitigation Strategy Owner
Supabase Vendor Lock-in Abstract client layer Arch Team
Type System Complexity Training program Eng Manager
Real-Time Scaling Load testing quarterly DevOps