hlsxarr
is a Python package that allows users to read Harmonized Landsat and Sentinel data as an xarray.Dataset
directly from a STAC API (as a data cube). Users can define a region of interest (ROI) in GeoJSON format and retrieve the data in the projected CRS of that ROI.
The data is loaded directly into memory, so ensure that you have sufficient memory available when choosing the size of your ROI. Data is fetched using Python parallel processing, and it's recommended to adjust the number of workers according to the available CPU cores.
The package supports the following common bands of both satellites:
CA
,BLUE
,GREEN
,RED
,NIR
,SWIR1
,SWIR2
,FMASK
- Save Earth Data Login (EDL) Token from Earthdata Login profile https://urs.earthdata.nasa.gov/documentation as an environment variable called
EDL_TOKEN
. - Python Version = ">=3.11"
pip install https://github.com/chathumal93/hlsxarr/releases/download/v0.1.0/hlsxarr-0.1.0-py3-none-any.whl
import os
from hlsxarr import HLSProcessor
roi_dict = {
"coordinates": [
[
[-78.60065306329707, 36.723116361254284],
[-78.60065306329707, 36.60070088520398],
[-78.33799755283125, 36.60070088520398],
[-78.33799755283125, 36.723116361254284],
[-78.60065306329707, 36.723116361254284],
]
],
"type": "Polygon",
}
# hls = HLSProcessor(edl_token=os.getenv("EDL_TOKEN"))
hls = HLSProcessor()
xr_ds = hls.process(
roi=roi_dict,
start_date="2025-01-01",
end_date="2025-01-07",
collections=["HLSS30.v2.0", "HLSL30.v2.0"],
bands=["CA", "BLUE", "GREEN", "RED", "NIR", "SWIR1", "SWIR2", "FMASK"],
limit=100,
workers=8,
max_area_km2=1000,
)
# Selecting data based on Satellite id
# HLSL30_ds = xr_ds.sel(time=xr_ds.SAT_ID == 0, drop=True)
# HLSS30_ds = xr_ds.sel(time=xr_ds.SAT_ID == 1, drop=True)
print(xr_ds)
>>>>
Searching HLS data...
Found 48 urls
Reading HLS Data: 100%|███████████████████████| 48/48 [00:29<00:00, 1.64file/s]
<xarray.Dataset> Size: 34MB
Dimensions: (time: 6, y: 473, x: 794)
Coordinates:
* time (time) datetime64[ns] 48B 2025-01-02T16:13:06.729000 ... 2025-01...
* x (x) float64 6kB 7.143e+05 7.143e+05 ... 7.38e+05 7.381e+05
* y (y) float64 4kB 4.067e+06 4.067e+06 ... 4.053e+06 4.053e+06
Data variables:
BLUE (time, x, y) int16 5MB -9999 -9999 -9999 -9999 ... 97 112 118 137
CA (time, x, y) int16 5MB -9999 -9999 -9999 -9999 ... 73 73 75 97
FMASK (time, x, y) uint8 2MB 241 241 241 241 241 241 ... 64 64 64 64 64
GREEN (time, x, y) int16 5MB -9999 -9999 -9999 -9999 ... 209 217 236 278
NIR (time, x, y) int16 5MB -9999 -9999 -9999 -9999 ... 1820 2014 2173
RED (time, x, y) int16 5MB -9999 -9999 -9999 -9999 ... 153 160 170 231
SAT_ID (time) uint8 6B 1 1 1 1 0 0
SWIR1 (time, x, y) int16 5MB -9999 -9999 -9999 -9999 ... 628 714 919 1035
SWIR2 (time, x, y) int16 5MB -9999 -9999 -9999 -9999 ... 271 298 386 473
Attributes:
crs: EPSG:32617
sat_ids: L30 : 0, S30 : 1