Skip to content

Load NASA Harmonized Landsat and Sentinel data as xarray datasets

Notifications You must be signed in to change notification settings

chathumal93/hlsxarr

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

hlsxarr

hlsxarr is a Python package that allows users to read Harmonized Landsat and Sentinel data as an xarray.Dataset directly from a STAC API (as a data cube). Users can define a region of interest (ROI) in GeoJSON format and retrieve the data in the projected CRS of that ROI.

The data is loaded directly into memory, so ensure that you have sufficient memory available when choosing the size of your ROI. Data is fetched using Python parallel processing, and it's recommended to adjust the number of workers according to the available CPU cores.

Supported Bands

The package supports the following common bands of both satellites:

  • CA,BLUE,GREEN,RED,NIR,SWIR1,SWIR2,FMASK

Requirements

Installation

pip install https://github.com/chathumal93/hlsxarr/releases/download/v0.1.0/hlsxarr-0.1.0-py3-none-any.whl

Example Usage

import os
from hlsxarr import HLSProcessor

roi_dict = {
     "coordinates": [
         [
             [-78.60065306329707, 36.723116361254284],
             [-78.60065306329707, 36.60070088520398],
             [-78.33799755283125, 36.60070088520398],
             [-78.33799755283125, 36.723116361254284],
             [-78.60065306329707, 36.723116361254284],
         ]
     ],
    "type": "Polygon",
 }

# hls = HLSProcessor(edl_token=os.getenv("EDL_TOKEN"))
hls = HLSProcessor()

xr_ds = hls.process(
    roi=roi_dict,
    start_date="2025-01-01",
    end_date="2025-01-07",
    collections=["HLSS30.v2.0", "HLSL30.v2.0"],
    bands=["CA", "BLUE", "GREEN", "RED", "NIR", "SWIR1", "SWIR2", "FMASK"],
    limit=100,
    workers=8,
    max_area_km2=1000,
)
# Selecting data based on Satellite id
# HLSL30_ds = xr_ds.sel(time=xr_ds.SAT_ID == 0, drop=True)
# HLSS30_ds = xr_ds.sel(time=xr_ds.SAT_ID == 1, drop=True)

print(xr_ds)
>>>>
Searching HLS data...
Found 48 urls
Reading HLS Data: 100%|███████████████████████| 48/48 [00:29<00:00,  1.64file/s]
<xarray.Dataset> Size: 34MB
Dimensions:  (time: 6, y: 473, x: 794)
Coordinates:
  * time     (time) datetime64[ns] 48B 2025-01-02T16:13:06.729000 ... 2025-01...
  * x        (x) float64 6kB 7.143e+05 7.143e+05 ... 7.38e+05 7.381e+05
  * y        (y) float64 4kB 4.067e+06 4.067e+06 ... 4.053e+06 4.053e+06
Data variables:
    BLUE     (time, x, y) int16 5MB -9999 -9999 -9999 -9999 ... 97 112 118 137
    CA       (time, x, y) int16 5MB -9999 -9999 -9999 -9999 ... 73 73 75 97
    FMASK    (time, x, y) uint8 2MB 241 241 241 241 241 241 ... 64 64 64 64 64
    GREEN    (time, x, y) int16 5MB -9999 -9999 -9999 -9999 ... 209 217 236 278
    NIR      (time, x, y) int16 5MB -9999 -9999 -9999 -9999 ... 1820 2014 2173
    RED      (time, x, y) int16 5MB -9999 -9999 -9999 -9999 ... 153 160 170 231
    SAT_ID   (time) uint8 6B 1 1 1 1 0 0
    SWIR1    (time, x, y) int16 5MB -9999 -9999 -9999 -9999 ... 628 714 919 1035
    SWIR2    (time, x, y) int16 5MB -9999 -9999 -9999 -9999 ... 271 298 386 473
Attributes:
    crs:      EPSG:32617
    sat_ids:  L30 : 0, S30 : 1

About

Load NASA Harmonized Landsat and Sentinel data as xarray datasets

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages