-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain.py
147 lines (107 loc) · 5.08 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# -*- coding: utf-8 -*-
"""main.ipynb
@author: HSU, CHIH-CHAO
"""
import argparse
import torch
import torch.optim as optim
import dataset
import model
import training
import matplotlib.pyplot as plt
#%%
def main():
print("Pytorch Version:", torch.__version__)
parser = argparse.ArgumentParser(description='TextCNN')
#Training args
parser.add_argument('--data-csv', type=str, default='./IMDB_Dataset.csv',
help='file path of training data in CSV format (default: ./train.csv)')
parser.add_argument('--spacy-lang', type=str, default='en',
help='language choice for spacy to tokenize the text')
parser.add_argument('--pretrained', type=str, default='glove.6B.300d',
help='choice of pretrined word embedding from torchtext')
parser.add_argument('--epochs', type=int, default=10,
help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.001,
help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.9,
help='SGD momentum (default: 0.9)')
parser.add_argument('--batch-size', type=int, default=64,
help='input batch size for training (default: 64)')
parser.add_argument('--val-batch-size', type=int, default=64,
help='input batch size for testing (default: 64)')
parser.add_argument('--kernel-height', type=str, default='3,4,5',
help='how many kernel width for convolution (default: 3, 4, 5)')
parser.add_argument('--out-channel', type=int, default=100,
help='output channel for convolutionaly layer (default: 100)')
parser.add_argument('--dropout', type=float, default=0.5,
help='dropout rate for linear layer (default: 0.5)')
parser.add_argument('--num-class', type=int, default=2,
help='number of category to classify (default: 2)')
#if you are using jupyternotebook with argparser
args = parser.parse_known_args()[0]
#args = parser.parse_args()
#Use GPU if it is available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
#%% Split whole dataset into train and valid set
dataset.split_train_valid(args.data_csv, './train.csv', './valid.csv', 0.7)
trainset, validset, vocab = dataset.create_tabular_dataset('./train.csv',
'./valid.csv',args.spacy_lang, args.pretrained)
#%%Show some example to show the dataset
print("Show some examples from train/valid..")
print(trainset[0].text, trainset[0].label)
print(validset[0].text, validset[0].label)
train_iter, valid_iter = dataset.create_data_iterator(args.batch_size, args.val_batch_size,
trainset, validset,device)
#%%Create
kernels = [int(x) for x in args.kernel_height.split(',')]
m = model.textCNN(vocab, args.out_channel, kernels, args.dropout , args.num_class).to(device)
# print the model summery
print(m)
train_loss = []
train_acc = []
test_loss = []
test_acc = []
best_test_acc = -1
#optimizer
optimizer = optim.Adam(m.parameters(), lr=args.lr)
for epoch in range(1, args.epochs+1):
#train loss
tr_loss, tr_acc = training.train(m, device, train_iter, optimizer, epoch, args.epochs)
print('Train Epoch: {} \t Loss: {} \t Accuracy: {}%'.format(epoch, tr_loss, tr_acc))
ts_loss, ts_acc = training.valid(m, device, valid_iter)
print('Valid Epoch: {} \t Loss: {} \t Accuracy: {}%'.format(epoch, ts_loss, ts_acc))
if ts_acc > best_test_acc:
best_test_acc = ts_acc
#save paras(snapshot)
print("model saves at {}% accuracy".format(best_test_acc))
torch.save(m.state_dict(), "best_validation")
train_loss.append(tr_loss)
train_acc.append(tr_acc)
test_loss.append(ts_loss)
test_acc.append(ts_acc)
#plot train/validation loss versus epoch
#plot train/validation loss versus epoch
x = list(range(1, args.epochs+1))
plt.figure()
plt.title("train/validation loss versus epoch")
plt.xlabel("epoch")
plt.ylabel("Average loss")
plt.plot(x, train_loss,label="train loss")
plt.plot(x, test_loss, color='red', label="test loss")
plt.legend(loc='upper right')
plt.grid(True)
plt.show()
#plot train/validation accuracy versus epoch
x = list(range(1, args.epochs+1))
plt.figure()
plt.title("train/validation accuracy versus epoch")
plt.xlabel("epoch")
plt.ylabel("accuracy(%)")
plt.plot(x, train_acc,label="train accuracy")
plt.plot(x, test_acc, color='red', label="test accuracy")
plt.legend(loc='upper right')
plt.grid(True)
plt.show()
if __name__ == '__main__':
main()