This repository contains implementation of different king of autoencoder models. Autoencoder can be used in differne ways, as to denoise clean the images.
Per the Anaconda docs:
Conda is an open source package management system and environment management system for installing multiple versions of software packages and their dependencies and switching easily between them. It works on Linux, OS X and Windows, and was created for Python programs but can package and distribute any software.
Using Anaconda consists of the following:
- Install
miniconda
on your computer, by selecting the latest Python version for your operating system. If you already haveconda
orminiconda
installed, you should be able to skip this step and move on to step 2. - Create and activate * a new
conda
environment.
* Each time you wish to work on any exercises, activate your conda
environment!
Download the latest version of miniconda
that matches your system.
Linux | Mac | Windows | |
---|---|---|---|
64-bit | 64-bit (bash installer) | 64-bit (bash installer) | 64-bit (exe installer) |
32-bit | 32-bit (bash installer) | 32-bit (exe installer) |
Install miniconda on your machine. Detailed instructions:
- Linux: http://conda.pydata.org/docs/install/quick.html#linux-miniconda-install
- Mac: http://conda.pydata.org/docs/install/quick.html#os-x-miniconda-install
- Windows: http://conda.pydata.org/docs/install/quick.html#windows-miniconda-install
For Windows users, these following commands need to be executed from the Anaconda prompt as opposed to a Windows terminal window. For Mac, a normal terminal window will work.
These instructions also assume you have git
installed for working with Github from a terminal window. but if you do not, you can download that first with the command:
conda install git
Now, we're ready to create our local environment!
- Clone the repository, and navigate to the downloaded folder. This may take a minute or two to clone due to the included image data.
git clone https://github.com/soni-ratnesh/autoencoder.git
cd autoencoder
-
Create (and activate) a new environment, named
autoencoder
with Python 3.6. If prompted to proceed with the install(Proceed [y]/n)
type y.- Linux or Mac:
conda create -n autoencoder python=3.6 source activate autoencoder
- Windows:
conda create --name autoencoder python=3.6 activate autoencoder
-
Install PyTorch and torchvision; this should install the latest version of PyTorch.
- Linux or Mac:
conda install pytorch torchvision -c pytorch
- Windows:
conda install pytorch -c pytorch pip install torchvision
-
Install a required packages
pip install -r requirements.txt
- Launch jupyter notebook
cd
cd deep-learning-v2-pytorch
jupyter notebook
To exit the environment when you have completed your work session, simply close the terminal window.