Skip to content

Instead of removing dynamic objects as distractors and reconstructing only static environments, this paper proposes an efficient architecture that incrementally tracks camera poses and establishes the 4D Gaussian radiance fields in unknown scenarios by using a sequence of RGB-D images.

Notifications You must be signed in to change notification settings

yanyan-li/4DGS-SLAM

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 

Repository files navigation

4D Gaussian Splatting SLAM

Yanyan Li · Youxu Fang · Zunjie Zhu · Kunyi Li · Yong Ding · Federico Tombari

teaser teaser


1.Installation

git clone https://github.com/yanyan-li/4DGS-SLAM.git
cd 4DGS-SLAM

Setup the environment.

conda create -n 4dgs-slam python=3.8
conda activate 4dgs-slam
# CUDA 11.7
pip install torch==1.13.1+cu117 torchvision==0.14.1+cu117 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu117
pip install -r requirements.txt

The simple-knn and diff-gaussian-rasterization libraries use the ones provided by MonoGS.

pip install submodules/simple-knn
pip install submodules/diff-gaussian-rasterization

Use torch-batch-svd speed up (Optional)

git clone https://github.com/KinglittleQ/torch-batch-svd
cd torch-batch-svd
python setup.py install

2.Pretrained Models

Download YOLOv9e-seg

cd 4DGS-SLAM/pretrained
wget https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov9e-seg.pt

Or download it directly from https://docs.ultralytics.com/models/yolov9/

Download RAFT

The model raft-things.pth used in this system can be obtained directly from https://drive.google.com/drive/folders/1sWDsfuZ3Up38EUQt7-JDTT1HcGHuJgvT

3.Datasets

TUM-RGBD dataset

bash scripts/download_tum_dynamic.sh

BONN dataset

4.Testing

Dynamic rendering

python slam.py --config configs/rgbd/tum/fr3_sitting.yaml --eval --dynamic

Adjust the frequency for image saving

python slam.py --config configs/rgbd/tum/fr3_sitting.yaml --eval --dynamic --interval 50

5.Acknowledgement

This work incorporates many open-source codes. We extend our gratitude to the authors of the software.

6.License

7.Citation

If you find this code/work useful for your own research, please consider citing:

@article{li20254d,
  title={4{D} {G}aussian {S}platting {SLAM}},
  author={Li, Yanyan and Fang, Youxu and Zhu, Zunjie and Li, Kunyi and Ding, Yong and Tombari, Federico},
  journal={arXiv preprint arXiv:2503.16710},
  year={2025}
}

About

Instead of removing dynamic objects as distractors and reconstructing only static environments, this paper proposes an efficient architecture that incrementally tracks camera poses and establishes the 4D Gaussian radiance fields in unknown scenarios by using a sequence of RGB-D images.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published